Chin. Phys. Lett.  2012, Vol. 29 Issue (12): 120201    DOI: 10.1088/0256-307X/29/12/120201
GENERAL |
Application of the Binary Bell Polynomials Method to the Dissipative (2+1)-Dimensional AKNS Equation
LIU Na1, LIU Xi-Qiang2**
1Business School, Shandong University of Political Science and Law, Jinan 250014
2School of Mathematical Sciences, Liaocheng University, Liaocheng 252059
Cite this article:   
LIU Na, LIU Xi-Qiang 2012 Chin. Phys. Lett. 29 120201
Download: PDF(411KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Based on the binary Bell polynomials, the bilinear representation, bilinear B?cklund transformation and the Lax pair for the dissipative (2+1)-dimensional Ablowitz–Kaup–Newell–Segur (AKNS) equation are obtained. Moreover, the infinite conservation laws are also derived.
Received: 13 August 2012      Published: 04 March 2013
PACS:  02.30.Ik (Integrable systems)  
  05.45.Yv (Solitons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/12/120201       OR      https://cpl.iphy.ac.cn/Y2012/V29/I12/120201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Na
LIU Xi-Qiang
[1] Beals R and Coifman R R 1986 Physica D 18 242
[2] Weiss J, Tabor M and Carnevale G 1983 J. Math. Phys. 24 522
[3] Matveev V B and Salle M A 1980 Darboux Transformation and Solutions (Berlin: Springer)
[4] Miura R M 1978 B?cklund Transformation (Berlin: Springer-Verlag)
[5] Hirota R and Satsuma J 1977 Prog. Theor. Phys. 57 797
[6] Hirota R 2004 Direct Methods in Soliton Theory (Berlin: Springer-Verlag)
[7] Ma H C and Lou S Y 2005 Chin. Phys. B 14 1495
[8] Wu J P 2011 Chin. Phys. Lett. 28 060207
[9] Bell E T 1934 Ann. Math. 35 258
[10] Gilson C et al 1996 Proc. R. Soc. London A 452 223
[11] Lambert F, Loris I and Springael J 2001 Inverse Probl. 17 1067
[12] Lambert F and Springael J 2008 Acta Appl. Math. 102 147
[13] Fan E G 2011 Phys. Lett. A 375 493
[14] Liu Q and Zhang W G 2010 Appl. Math. Comput. 217 735
[15] Wazwaz A M 2011 Appl. Math. Comput. 217 8840
[16] Najafi M, Najafi M and Darvishi M T 2012 Chin. Phys. Lett. 29 040202
[17] ?zer T 2009 Chaos Solitons Fractals 42 577
[18] Bruzon M S et al 2003 Theor. Math. Phys. 137 1378
Related articles from Frontiers Journals
[1] S. Y. Lou, Man Jia, and Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 120201
[2] Wen-Xiu Ma. Matrix Integrable Fourth-Order Nonlinear Schr?dinger Equations and Their Exact Soliton Solutions[J]. Chin. Phys. Lett., 2022, 39(10): 120201
[3] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 120201
[4] Xiao-Man Zhang, Yan-Hong Qin, Li-Ming Ling, and Li-Chen Zhao. Inelastic Interaction of Double-Valley Dark Solitons for the Hirota Equation[J]. Chin. Phys. Lett., 2021, 38(9): 120201
[5] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 120201
[6] Yusong Cao and Junpeng Cao. Exact Solution of a Non-Hermitian Generalized Rabi Model[J]. Chin. Phys. Lett., 2021, 38(8): 120201
[7] Zequn Qi , Zhao Zhang , and Biao Li. Space-Curved Resonant Line Solitons in a Generalized $(2+1)$-Dimensional Fifth-Order KdV System[J]. Chin. Phys. Lett., 2021, 38(6): 120201
[8] Wei Wang, Ruoxia Yao, and Senyue Lou. Abundant Traveling Wave Structures of (1+1)-Dimensional Sawada–Kotera Equation: Few Cycle Solitons and Soliton Molecules[J]. Chin. Phys. Lett., 2020, 37(10): 120201
[9] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 120201
[10] Danda Zhang, Da-Jun Zhang, Sen-Yue Lou. Lax Pairs of Integrable Systems in Bidifferential Graded Algebras[J]. Chin. Phys. Lett., 2020, 37(4): 120201
[11] Yu-Han Wu, Chong Liu, Zhan-Ying Yang, Wen-Li Yang. Breather Interaction Properties Induced by Self-Steepening and Space-Time Correction[J]. Chin. Phys. Lett., 2020, 37(4): 120201
[12] Bao Wang, Zhao Zhang, Biao Li. Soliton Molecules and Some Hybrid Solutions for the Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2020, 37(3): 120201
[13] Zhao Zhang, Shu-Xin Yang, Biao Li. Soliton Molecules, Asymmetric Solitons and Hybrid Solutions for (2+1)-Dimensional Fifth-Order KdV Equation[J]. Chin. Phys. Lett., 2019, 36(12): 120201
[14] Zhou-Zheng Kang, Tie-Cheng Xia. Construction of Multi-soliton Solutions of the $N$-Coupled Hirota Equations in an Optical Fiber[J]. Chin. Phys. Lett., 2019, 36(11): 120201
[15] Yong-Shuai Zhang, Jing-Song He. Bound-State Soliton Solutions of the Nonlinear Schr?dinger Equation and Their Asymmetric Decompositions[J]. Chin. Phys. Lett., 2019, 36(3): 120201
Viewed
Full text


Abstract