Chin. Phys. Lett.  2012, Vol. 29 Issue (10): 107601    DOI: 10.1088/0256-307X/29/10/107601
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Time-Domain Frequency Correction Method for Averaging Low-Field NMR Signals Acquired in Urban Laboratory Environment
QIU Long-Qing1,3, LIU Chao1,3,4, DONG Hui1,3, XU Lu1,3, ZHANG Yi2,3, Hans-Joachim Krause2,3, XIE Xiao-Ming1,3**, Andreas Offenhäusser2,3
1State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Shanghai 200050
2Peter Grünberg Institute (PGI-8), Forschungszentrum Jülich, Jülich, D-52425, Germany
3Joint Research Laboratory on Superconductivity and Bioelectronics, Collaboration between CAS-Shanghai and Forschungszentrum Jülich, Shanghai 200050
4Graduate University of the Chinese Academy of Sciences, Beijing 100049
Cite this article:   
QIU Long-Qing, LIU Chao, DONG Hui et al  2012 Chin. Phys. Lett. 29 107601
Download: PDF(1126KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Using a second-order helium-cooled superconducting quantum interference device gradiometer as the detector, ultra-low-field nuclear magnetic resonance (ULF-NMR) signals of protons are recorded in an urban environment without magnetic shielding. The homogeneity and stability of the measurement field are investigated. NMR signals of protons are studied at night and during working hours. The Larmor frequency variation caused by the fluctuation of the external magnetic field during daytime reaches around 5 Hz when performing multiple measurements for about 10 min, which seriously affects the results of averaging. In order to improve the performance of the averaged data, we suggest the use of a data processor, i.e. the so-called time-domain frequency correction (TFC). For a 50-times averaged signal spectrum, the signal-to-noise ratio is enhanced from 30 to 120 when applying TFC while preserving the NMR spectrum linewidth. The TFC is also applied successfully to the measurement data of the hetero-nuclear J-coupling in 2,2,2-trifluoroethanol.
Received: 11 May 2012      Published: 01 October 2012
PACS:  76.60.-k (Nuclear magnetic resonance and relaxation)  
  85.25.Dq (Superconducting quantum interference devices (SQUIDs))  
  74.25.nj (Nuclear magnetic resonance)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/10/107601       OR      https://cpl.iphy.ac.cn/Y2012/V29/I10/107601
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
QIU Long-Qing
LIU Chao
DONG Hui
XU Lu
ZHANG Yi
Hans-Joachim Krause
XIE Xiao-Ming
Andreas Offenh?usser
[1] Packard M and Varian R 1954 Phys. Rev. 93 941
[2] McDermott R, Trabesinger A H, Mück M, Hahn E L, Pines A and Clarke J 2002 Science 295 2247
[3] Zhang Y, Qiu L Q, Krause H J, Dong H, Braginski A I, Tanaka S and Offenhaeusser A 2009 Physica C 469 1624
[4] Trabesinger A H, McDermott R, Lee S K, Mueck M, Clarke J and Pines A 2004 J. Phys. Chem. A 108 957
[5] Zotev V S, Matlashov A N, Volegov P L, Savukov I M, Espy M A Mosher J C, Gomez J J and Kraus R H 2008 J. Magn. Reson. 194 115
[6] Burghoff M, Hartwig S, Trahms L and Bernarding J 2005 Appl. Phys. Lett. 87 054103
[7] Qiu L Q, Zhang Y, Krause H J, Braginski A I, Tanaka S and Offenhaeusser A 2009 IEEE Trans. Appl. Supercond. 19 831
[8] Qiu L Q, Zhang Y, Krause H J, Braginski A I, Burghoff M and Trahms L 2007 Appl. Phys. Lett. 91 072505
[9] Yang H C, Liao S H, Horng H R, Kuo H L, Chen H H and Yang S Y 2006 Appl. Phys. Lett. 88 252505
[10] Qiu L Q, Zhang G F, Wang Y L and Xie X M 2010 J. Phys.: Conf. Ser. 234 042028
[11] Dong H, Wang Y L, Zhang S L, Sun Y and Xie X M 2008 Supercond. Sci. Technol. 21 115009
Related articles from Frontiers Journals
[1] Kai-Yue Zeng, Fang-Yuan Song, Lang-Sheng Ling, Wei Tong, Shi-Liang Li, Zhao-Ming Tian, Long Ma, and Li Pi. Incommensurate Magnetic Order in Sm$_3$BWO$_9$ with Distorted Kagome Lattice[J]. Chin. Phys. Lett., 2022, 39(10): 107601
[2] Shuo Li, Shuo Han, Shaohua Yan, Yi Cui, Le Wang, Shanmin Wang, Shanshan Chen, Hechang Lei, Feng Yuan, Jinshan Zhang, and Weiqiang Yu. Pressure-Induced Superconductivity in Flat-Band Kagome Compounds Pd$_3$P$_2$(S$_{1-x}$Se$_x$)$_8$[J]. Chin. Phys. Lett., 2022, 39(6): 107601
[3] Chao Mu, Qiangwei Yin, Zhijun Tu, Chunsheng Gong, Hechang Lei, Zheng Li, and Jianlin Luo. S-Wave Superconductivity in Kagome Metal CsV$_{3}$Sb$_{5}$ Revealed by $^{121/123}$Sb NQR and $^{51}$V NMR Measurements[J]. Chin. Phys. Lett., 2021, 38(7): 107601
[4] Hui Zhou, Zhao-Kai Li, Heng-Yan Wang, Hong-Wei Chen, Xin-Hua Peng, Jiang-Feng Du. Experimental Observation of the Ground-State Geometric Phase of Three-Spin $XY$ Model[J]. Chin. Phys. Lett., 2016, 33(06): 107601
[5] DAI Jia, WANG Peng-Shuai, SUN Shan-Shan, PANG Fei, ZHANG Jin-Shan, DONG Xiao-Li, YUE Gen, JIN Kui, CONG Jun-Zhuang, Sun Yang, YU Wei-Qiang. Nuclear-Magnetic-Resonance Properties of the Staircase Kagomé Antiferromagnet $PbCu_3TeO_7$[J]. Chin. Phys. Lett., 2015, 32(12): 107601
[6] YANG Jie, ZHOU Rui, WEI Lin-Lin, YANG Huai-Xin, LI Jian-Qi, ZHAO Zhong-Xian, ZHENG Guo-Qing. New Superconductivity Dome in LaFeAsO1−xFx Accompanied by Structural Transition[J]. Chin. Phys. Lett., 2015, 32(10): 107601
[7] FAN Guo-Zhi, CHEN Rong-Yan, WANG Nan-Lin, LUO Jian-Lin. 31P Nuclear Magnetic Resonance of Charge-Density-Wave Transition in a Single Crystal of RuP[J]. Chin. Phys. Lett., 2015, 32(07): 107601
[8] JIANG Zhi-Min, WANG Wei-Min. A Method of Choosing the Optimal Number of Singular Values in the Inverse Laplace Transform for the Two-Dimensional NMR Distribution Function[J]. Chin. Phys. Lett., 2013, 30(1): 107601
[9] TAN Yi-Peng, NIE Xin-Fang, LI Jun, CHEN Hong-Wei, ZHOU Xian-Yi, PENG Xin-Hua, DU Jiang-Feng. Preparing Pseudo-Pure States in a Quadrupolar Spin System Using Optimal Control[J]. Chin. Phys. Lett., 2012, 29(12): 107601
[10] MA Long, ZHANG Jin-Shan, WANG Du-Ming, HE Jun-Bao, XIA Tian-Long, CHEN Gen-Fu, YU Wei-Qiang. NMR Study of Superconductivity and Spin Fluctuations in Hole-Doped Superconductor Ca1-xNaxFe2As2 (Tc=32 K)[J]. Chin. Phys. Lett., 2012, 29(6): 107601
[11] DENG Hong-Liang, FANG Xi-Ming. One-Step Implementation of Single Spin Measurement in Spin Star Network[J]. Chin. Phys. Lett., 2008, 25(2): 107601
[12] FENG Hai, ZHANG Sheng-Chun, CAI Shu-Hui, CHEN Zhong, FENG Ji. Solvent Suppression in Intermolecular Multiple-Quantum Coherence Nuclear Magnetic Resonance Spectra with Only z-axis Gradients[J]. Chin. Phys. Lett., 2007, 24(4): 107601
[13] YANG Xiao-Dong, WANG An-Min, MA Xiao-San, XU Feng, YOU Hao, NIU Wan-Qing. Experimental Creation of Entanglement Using Separable States[J]. Chin. Phys. Lett., 2005, 22(2): 107601
[14] ZHOU Xin, SUN Xian-Ping, LUO Jun, ZENG Xi-Zhi, LIU Mai-Li, ZHAN Ming-Sheng. Production of Hyperpolarized 129Xe Gas Without Nitrogen by Optical Pumping at 133Cs D2 Line in Flow System[J]. Chin. Phys. Lett., 2004, 21(8): 107601
[15] ZHOU Dong-Mei, ZHENG Yong-Nan, ZHU Jia-Zheng, XU Yong-Jun, DU En-Peng, WANG Zhi-Qiang, Luo Hai-Long, YUAN Da-Qing, RONG Chao-Fan, M. Mihara, M. Fukuda, K. Matsuta, T. Minamisono, ZHU Sheng-Yun. Development of β-NMR and β-NQR[J]. Chin. Phys. Lett., 2003, 20(10): 107601
Viewed
Full text


Abstract