Chin. Phys. Lett.  2012, Vol. 29 Issue (10): 107401    DOI: 10.1088/0256-307X/29/10/107401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Electronic Band Structure and Optical Parameters of Spinel SnMg2O4 by Modified Becke–Johnson Potential
Masood Yousaf1, M. A. Saeed1**, Ahmad Radzi Mat Isa1, Amiruddin Shaari1, H. A. Rahnamaye Aliabad2
1Physics Department, Faculty of Science, Universiti Teknologi Malaysia, Skudai-81310, Johor, Malaysia
2Department of Physics, Hakim Sabzevari University, Iran
Cite this article:   
Masood Yousaf, M. A. Saeed, Ahmad Radzi Mat Isa et al  2012 Chin. Phys. Lett. 29 107401
Download: PDF(1489KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The electronic band structure and optical parameters of SnMg2O4 are investigated by the first-principles technique based on a new potential approximation known as modified Becke–Johnson (mBJ). The direct band gap values by LDA, GGA and EV-GGA are underestimated significantly as compared to mBJ-GGA, which generally provides the results comparable to the experimental values. Similarly, the present band gap value (4.85 eV) using mBJ-GGA is greatly enhanced to the previous value by EV-GGA (2.823 eV). The optical parametric quantities (dielectric constant, index of refraction, reflectivity, optical conductivity and absorption coefficient) relying on the band structure are presented and examined. The first critical point (optical absorption's edge) in SnMg2O4 occurs at about 4.85 eV. A strong absorption region is observed, extending between 5.4 eV to 25.0 eV. For SnMg2O4, static dielectric constant ε1(0), static refractive index n(0), and the magnitude of the coefficient of reflectivity at zero frequency R(0) are 2.296, 1.515 and 0.0419, respectively. The optoelectronic properties indicate that this material can be successfully used in optical devices.
Received: 04 July 2012      Published: 01 October 2012
PACS:  74.20.Pq (Electronic structure calculations)  
  74.25.Gz (Optical properties)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/10/107401       OR      https://cpl.iphy.ac.cn/Y2012/V29/I10/107401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Masood Yousaf
M. A. Saeed
Ahmad Radzi Mat Isa
Amiruddin Shaari
H. A. Rahnamaye Aliabad
[1] Sickafus K E and Hughes R 1999 J. Am. Ceram. Soc. 82 3277
[2] Ciupina V, Carazeanua I and Prodan G 2004 J. Optoelectron. Adv. Mater. 6 1317 and reference therein
[3] Tie-Ge Z, Zhi-Qiang L and Z U O X 2012 Chin. Phys. Lett. 29 047503
[4] Ying X and Zhi Z 2007 Chin. Phys. Lett. 24 184
[5] Ruiz-Fuertes J, Errandonea D, Manjón F J, Martinez-Garcia A S D, Ursaki V V and Tiginyanu I M 2008 J. App. Phys. 103
[6] Masrour R, Hamedoun M, Benyoussef A, Hourmatallah A, Bouslykhane K and Benzakour N 2008 Chin. Phys. Lett. 25 4117
[7] Zerarga F, Bouhemadou A, Khenata R and Bin-Omran S 2011 Solid State Sci. 13 1638 and reference therein
[8] Reffas M, Bouhemadou A, Khenata R, Ouahrani T and Bin-Omran S 2010 Physica B 405 4079
[9] Bouhemadou A, Khenata R and Zerarga F 2007 Comput. Mater. Sci. 39 709
[10] Khenata R, Sahnoun M, Baltache H, R érat M, Reshak A H, Al-Douri Y and Bouhafs B 2005 Phys. Lett. A 344 271
[11] Allali D, Bouhemadou A and Bin-Omran S 2011 Comput. Mater. Sci. 51 194 and reference therein
[12] Tran F and Blaha P 2009 Phys. Rev. Lett. 102 226401
[13] Guo S D and Liu B G 2011 Europhys. Lett. 93 47006
[14] Al-Sawai W, Lin H, Markiewicz R S, Wray L A, Xia Y, Xu S Y, Hasan M Z and Bansil A 2010 Phys. Rev. B 82 125208
[15] Feng W, Xiao D, Zhang Y and Yao Y 2010 Phys. Rev. B 82 235121
[16] Singh D J 2010 Phys. Rev. B 82 205102
[17] Tran F, Blaha P and Schwarz K 2007 J. Phys.: Condens. Matter 19 196208
[18] Koller D, Tran F and Blaha P 2011 Phys. Rev. B 83 195134
[19] Hohenberg P and Kohn W 1964 Phys. Rev. 136 864
[20] Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J 2001 WIEN2k, An Augmented Plane Wave+Local Orbitals Program for Calculating Crystal Properties (Vienna University of Technology, Austria)
[21] Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 244
[22] Poix P 1964 Ann. Phys. 9 261
[23] Amin B, Ahmad I and Maqbool M 2010 J. Lightwave Technol. 28 223
[24] Yong-Nian X and Ching W Y 1991 Phys. Rev. B 43 4461
[25] Feng J, Xiao B, Chen J C and Zhou C T 2009 Solid State Sci. 11 259
[26] Feng J, Xiao B, Chen J C, Zhou C T, Du Y P and Zhou R 2009 Solid State Commun. 149 1569
[27] Van der Laag N J, Snel M D, Magusin P C M, de With G 2004 J. Eur. Ceram. Soc. 24 2417
[28] D Penn 1962 Phys. Rev. 128 2093
[29] Fox M 2001 Optical Properties of Solids (Oxford: Oxford University Press)
Related articles from Frontiers Journals
[1] Liu Yang, Ya-Ping Li, Hao-Dong Liu, Na Jiao, Mei-Yan Ni, Hong-Yan Lu, Ping Zhang, and C. S. Ting. Theoretical Prediction of Superconductivity in Boron Kagome Monolayer: $M$B$_{3}$ ($M$ = Be, Ca, Sr) and the Hydrogenated CaB$_{3}$[J]. Chin. Phys. Lett., 2023, 40(1): 107401
[2] Yiding Liu, Qiang Fan, Jianhui Yang, Lili Wang, Weibin Zhang, and Gang Yao. Predicted High-Temperature Superconductivity in Rare Earth Hydride ErH$_{2}$ at Moderate Pressure[J]. Chin. Phys. Lett., 2022, 39(12): 107401
[3] Yuhao Gu, Kun Jiang, Xianxin Wu, and Jiangping Hu. Cobalt-Dimer Nitrides: A Potential Novel Family of High-Temperature Superconductors[J]. Chin. Phys. Lett., 2022, 39(9): 107401
[4] Lin Feng, Chen-Chen Guo, Xue-Ying Zhang, Hai-Cheng Xuan, Wen-Hong Wang, En-Ke Liu, Guang-Heng Wu. Possible Martensitic Transformation in Heusler Alloy Pt$_{2}$MnSn from First Principles[J]. Chin. Phys. Lett., 2018, 35(3): 107401
[5] LIANG Yi, WU Xian-Xin, HU Jiang-Ping. Electronic Structure Properties in the Nematic Phases of FeSe[J]. Chin. Phys. Lett., 2015, 32(11): 107401
[6] XU Di-Fei, DU Yong-Ping, WANG Zhen, LI Yu-Peng, NIU Xiao-Hai, YAO Qi, Dudin Pavel, XU Zhu-An, WAN Xian-Gang, FENG Dong-Lai. Observation of Fermi Arcs in Non-Centrosymmetric Weyl Semi-Metal Candidate NbP[J]. Chin. Phys. Lett., 2015, 32(10): 107401
[7] WU Xian-Xin, LE Cong-Cong, YUAN Jing, FAN Heng, HU Jiang-Ping. Magnetism in Quasi-One-Dimensional A2Cr3As3 (A=K,Rb) Superconductors[J]. Chin. Phys. Lett., 2015, 32(5): 107401
[8] A. Manzar, G. Murtaza, R. Khenata, Masood Yousaf, S. Muhammad, Hayatullah. Electronic and Optic Properties of Cubic Spinel CdX2O4 (X=In, Ga, Al) through Modified Becke–Johnson Potential[J]. Chin. Phys. Lett., 2014, 31(06): 107401
[9] A. Manzar, G. Murtaza, R. Khenata, S. Muhammad, Hayatullah. Electronic and Optical Properties of Spinel GeMg2O4 and GeCd2O4[J]. Chin. Phys. Lett., 2013, 30(12): 107401
[10] Masood Yousaf, M. A. Saeed, Ahmad Radzi Mat Isa, H. A. Rahnamaye Aliabad, M. R. Sahar . An Insight into the Structural, Electronic and Transport Characteristics of XIn2S4 (X = Zn, Hg) Thiospinels using a Highly Accurate All-Electron FP-LAPW+Lo Method[J]. Chin. Phys. Lett., 2013, 30(7): 107401
[11] A. Manzar, G. Murtaza, R. Khenata, S. Muhammad, Hayatullah. Electronic Band Profile and Optical Response of Spinel MgIn2O4 through Modified Becke–Johnson Potential[J]. Chin. Phys. Lett., 2013, 30(6): 107401
[12] A. Manzar, G. Murtaza, R. Khenata, S. Muhammad, Hayatullah. Electronic Band Structure and Optical Response of Spinel SnX2O4 (X = Mg, Zn) through Modified Becke–Johnson Potential[J]. Chin. Phys. Lett., 2013, 30(4): 107401
[13] DAI Jun, LI Zhen-Yu, YANG Jin-Long. Electron-phonon Coupling in Gallium-Doped Germanium[J]. Chin. Phys. Lett., 2010, 27(8): 107401
Viewed
Full text


Abstract