Chin. Phys. Lett.  2012, Vol. 29 Issue (10): 107304    DOI: 10.1088/0256-307X/29/10/107304
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Properties of p-NiO/n-GaN Diodes Fabricated by Magnetron Sputtering
WANG Hui1,2, ZHANG Bao-Lin1, WU Guo-Guang1, WU Chao1, SHI Zhi-Feng1, ZHAO Yang1, WANG Jin1, MA Yan1, DU Guo-Tong 1, DONG Xin1**
1State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012
2College of Physics and Engineering, Henan University of Science and Technology, Luoyang 471003
Cite this article:   
WANG Hui, ZHANG Bao-Lin, WU Guo-Guang et al  2012 Chin. Phys. Lett. 29 107304
Download: PDF(675KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The p-NiO thin film is prepared by radio frequency magnetron sputtering on the n-GaN/sapphire substrate to form p-NiO/n-GaN heterojunction diodes. The structural, optical and electrical properties of the p-NiO thin film are investigated. The results indicate that the NiO film has good crystal qualities and stable p-type conductivities. The current-voltage measurement of the p-NiO/n-GaN diode exhibits typical rectifying behaviour with a turn-on voltage of about 2.2 V. Under forward bias, a prominent ultraviolet emission centered at 375 nm is observed at room temperature. Furthermore, the mechanism of the light emission is discussed in terms of the band diagrams of the heterojunction in detail.
Received: 10 July 2012      Published: 01 October 2012
PACS:  73.20.At (Surface states, band structure, electron density of states)  
  73.20.Hb (Impurity and defect levels; energy states of adsorbed species)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/10/107304       OR      https://cpl.iphy.ac.cn/Y2012/V29/I10/107304
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Hui
ZHANG Bao-Lin
WU Guo-Guang
WU Chao
SHI Zhi-Feng
ZHAO Yang
WANG Jin
MA Yan
DU Guo-Tong
DONG Xin
[1] Sun X W, Ling B, Zhao J L, Tan S T, Yang Y, Shen Y Q, Dong Z L and Li X C 2009 Appl. Phys. Lett. 95 133124
[2] Nakamura S and Fasol G 1997 The Blue Laser Diode: GaN Based Light Emitters and Lasers (Berlin: Springer)
[3] Lupan O, Pauporté T, Viana B, Tiginyanu I M, Ursaki V V and Cortès R 2010 ACS Appl. Mater. Interfaces 2 2083
[4] Grandusky J R, Smart a J A, Mendrick a M C, Schowalter a L J, Chen b K X and Schubert b E F 2009 J. Cryst. Growth 311 2864
[5] Fan S W, Arvind K S and Vinayak P D 2009 Appl. Phys. Lett. 95 142106
[6] Tsukazaki A, Masashi K, Ohtomo A, Onuma T, Ohtani M, Makino T, Sumiya M, Ohtani K, Chichibu S F, Fuke S, Segawa Y, Ohno H, Koinuma H and Kawasaki M 2005 Jpn. J. Appl. Phys. 44 643
[7] Yang Y, Sun X W, Tay B K, Cao J Wang X and Zhang X H 2008 Appl. Phys. Lett. 93 253107
[8] Chen C H, Chang S J, Chang S P, Li M J, Chen I C, Hsueh T J and Hsu C L 2009 Appl. Phys. Lett. 95 223101
[9] Ohta H, Hirano M, Nakahara K, Maruta H, Tanabe T, Kamiya M, Kamiya T and Hosono H 2003 Appl. Phys. Lett. 83 1029
[10] Vygarenko Y, Wang K and Natha A 2006 Appl. Phys. Lett. 89 172105
[11] Xi Y Y, Hsu Y F, Djuri?i? A, Chan W K, Tam H L and Cheah K W 2008 Appl. Phys. Lett. 92 113505
[12] Park T Y, Choi Y S, Kim S M, Jung G Y, Park S J, Kwon B J and Cho Y H 2011 Appl. Phys. Lett. 98 251111
[13] Shih Y T, Wu M K, Li W C, Kuan H, Yang J R, Makoto S and Chen M J 2009 Nanotechnology 20 165201
[14] Sachindra N D, Choi J H, Jyoti P K, Lee T I, Myoung J M 2010 Mater. Chem. Phys. 121 472
[15] Zhang J Y, Zhang Q F, Deng T S and Wu J L 2009 Appl. Phys. Lett. 95 211107
[16] Chuan B T, Soo J C and Kian P L 2010 J. Phys. Chem. C 114 9981
[17] Sato H, Minami T, Takata S and Yamada T 1993 Thin Solid Films 236 27
[18] Wang K, Vygranenko Y and Nathan A 2008 Thin Solid Films 516 1640
[19] Chen P L, Ma X Y, Zhang Y Y, Li D S, Yang D R 2010 J. Electron. Mater. 39 6 52
[20] Irwin M D, Buchholz D B, Hains A W, Chang R P and Marks T J 2008 Proc. Natl. Acad. Sci. USA 105 2783
Related articles from Frontiers Journals
[1] Yuan Wang, Yixuan Liu, Zhanyang Hao, Wenjing Cheng, Junze Deng, Yuxin Wang, Yuhao Gu, Xiao-Ming Ma, Hongtao Rong, Fayuan Zhang, Shu Guo, Chengcheng Zhang, Zhicheng Jiang, Yichen Yang, Wanling Liu, Qi Jiang, Zhengtai Liu, Mao Ye, Dawei Shen, Yi Liu, Shengtao Cui, Le Wang, Cai Liu, Junhao Lin, Ying Liu, Yongqing Cai, Jinlong Zhu, Chaoyu Chen, and Jia-Wei Mei. Flat Band and $\mathbb{Z}_2$ Topology of Kagome Metal CsTi$_{3}$Bi$_{5}$[J]. Chin. Phys. Lett., 2023, 40(3): 107304
[2] Yue Li, Li Zhu, Chunsheng Chen, Ying Zhu, Changjin Wan, and Qing Wan. High-Performance Indium-Gallium-Zinc-Oxide Thin-Film Transistors with Stacked Al$_{2}$O$_{3}$/HfO$_{2}$ Dielectrics[J]. Chin. Phys. Lett., 2022, 39(11): 107304
[3] Juan-Juan Hao, Pei-Han Sun, Ming Zhang, Xian-Xin Wu, Kai Liu, and Fan Yang. First-Principles Study of Hole-Doped Superconductors $R$NiO$_2$ ($R$ = Nd, La, and Pr)[J]. Chin. Phys. Lett., 2022, 39(6): 107304
[4] Xiaoxia Li, Qili Li, Tongzhou Ji, Ruige Yan, Wenlin Fan, Bingfeng Miao, Liang Sun, Gong Chen, Weiyi Zhang, and Haifeng Ding. Lieb Lattices Formed by Real Atoms on Ag(111) and Their Lattice Constant-Dependent Electronic Properties[J]. Chin. Phys. Lett., 2022, 39(5): 107304
[5] Danwen Yuan, Yuefang Hu, Yanmin Yang, and Wei Zhang. Topological Properties in Strained Monolayer Antimony Iodide[J]. Chin. Phys. Lett., 2021, 38(11): 107304
[6] Guohui Zhan, Minji Shi, Zhilong Yang, and Haijun Zhang. A Programmable k$\cdot$p Hamiltonian Method and Application to Magnetic Topological Insulator MnBi$_2$Te$_4$[J]. Chin. Phys. Lett., 2021, 38(7): 107304
[7] Jun Zhang, Junbo Cheng, Shuaihua Ji, and Yeping Jiang. Visualizing the in-Gap States in Domain Boundaries of Ultra-Thin Topological Insulator Films[J]. Chin. Phys. Lett., 2021, 38(7): 107304
[8] Changyuan Zhou , Dezhi Song , Yeping Jiang, and Jun Zhang . Modification of the Hybridization Gap by Twisted Stacking of Quintuple Layers in a Three-Dimensional Topological Insulator Thin Film[J]. Chin. Phys. Lett., 2021, 38(5): 107304
[9] Rubah Kausar, Chao Zheng, and Xin Wan. Level Statistics Crossover of Chiral Surface States in a Three-Dimensional Quantum Hall System[J]. Chin. Phys. Lett., 2021, 38(5): 107304
[10] Lei Sun, Xiaoming Zhang, Han Gao, Jian Liu, Feng Liu, and Mingwen Zhao. Inversion/Mirror Symmetry-Protected Dirac Cones in Distorted Ruby Lattices[J]. Chin. Phys. Lett., 2020, 37(12): 107304
[11] Linwei Zhou, Chen-Guang Wang, Zhixin Hu, Xianghua Kong, Zhong-Yi Lu, Hong Guo, and Wei Ji. Quasi-One-Dimensional Free-Electron-Like States Selected by Intermolecular Hydrogen Bonds at the Glycine/Cu(100) Interface[J]. Chin. Phys. Lett., 2020, 37(11): 107304
[12] Xiao-Ran Wang , Cui-Xian Guo , Qian Du , and Su-Peng Kou. State-Dependent Topological Invariants and Anomalous Bulk-Boundary Correspondence in Non-Hermitian Topological Systems with Generalized Inversion Symmetry[J]. Chin. Phys. Lett., 2020, 37(11): 107304
[13] Yong-Hua Cao, Jin-Tao Bai, and Hong-Jian Feng. Perovskite Termination-Dependent Charge Transport Behaviors of the CsPbI$_{3}$/Black Phosphorus van der Waals Heterostructure[J]. Chin. Phys. Lett., 2020, 37(10): 107304
[14] Pengdong Wang, Yihao Wang, Bo Zhang, Yuliang Li, Sheng Wang, Yunbo Wu, Hongen Zhu, Yi Liu, Guobin Zhang, Dayong Liu, Yimin Xiong, and Zhe Sun. Experimental Observation of Electronic Structures of Kagome Metal YCr$_{6}$Ge$_{6}$[J]. Chin. Phys. Lett., 2020, 37(8): 107304
[15] Zhihai Cui, Yuting Qian, Wei Zhang, Hongming Weng, and Zhong Fang. Type-II Dirac Semimetal State in a Superconductor Tantalum Carbide[J]. Chin. Phys. Lett., 2020, 37(8): 107304
Viewed
Full text


Abstract