Chin. Phys. Lett.  2012, Vol. 29 Issue (10): 107302    DOI: 10.1088/0256-307X/29/10/107302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Spin-Selective Transport of Electron in a Quantum Dot under Magnetic Field
LI Bo-Xin1, ZHENG Jun2, CHI Feng3
1College of New Energy, Bohai University, Jinzhou 121013
2SKLSM, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
3College of Engineering, Bohai University, Jinzhou 121013
Cite this article:   
LI Bo-Xin, ZHENG Jun, CHI Feng 2012 Chin. Phys. Lett. 29 107302
Download: PDF(593KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study electronic spin-polarised transport in a system composed of a quantum dot (QD) connected to one normal metal electrode and one ferromagnetic one. The electrical current of each spin component and the spin accumulation on the QD are calculated by using the nonequilibrium Green's function method. We find that in the Coulomb blockade regime, the current spin polarisation can reach 100% under a strong magnetic field. Meanwhile, the spin accumulation on the QD approaches to unit, and thus the dot is occupied by electrons of one certain spin orientation. The system can operate as a spin injector from a normal metal reservoir to a semiconductor material, and may find real usage in solid state quantum information processes.
Received: 29 May 2012      Published: 01 October 2012
PACS:  73.23.-b (Electronic transport in mesoscopic systems)  
  72.25.-b (Spin polarized transport)  
  73.40.Gk (Tunneling)  
  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/10/107302       OR      https://cpl.iphy.ac.cn/Y2012/V29/I10/107302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Bo-Xin
ZHENG Jun
CHI Feng
[1] ?uti? I, Fabian J and Sarma S D 2004 Rev. Mod. Phys. 76 323
[2] Fert A 2008 Rev. Mod. Phys. 80 1517
[3] Grünberg P A 2008 Rev. Mod. Phys. 80 1531
[4] Guo Y, Qin J G, Chen X Y and Gu B L 2003 Chin. Phys. Lett. 20 1124
[5] Wu M W, Zhou J and Shi Q W 2004 Appl. Phys. Lett. 85 1012
[6] Li S S and Xia J B 2007 Appl. Phys. Lett. 91 092119
[7] Press D, Ladd T D, Zhang B Y and Yamamoto Y 2008 Nature 456 218
[8] Greilich A, Economou S E, Spatzek S, Yakovlev D R, Reuter D, Wieck A D, Reinecke T L and Bayer M 2009 Nat. Phys. 5 262
[9] Xu X D, Wu Y W, Sun B, Huang Q, Cheng J, Steel D G, Bracker A S, Gammon D, Emary C and Sham L J 2007 Phys. Rev. Lett. 99 097401
[10] Ebbens A, Krizhanovskii D N, Tartakovskii A I, Pulizzi F, Wright T, Savelyev A V, Skolnick M S and Hopkinson M 2005 Phys. Rev. B 72 073307
[11] Clark S M, Fu K M C, Ladd T D and Yamamoto Y 2007 Phys. Rev. Lett. 99 040501
[12] Murayama A, Asahina T, Nishibayashi K and Souma I and Oka Y 2006 Appl. Phys. Lett. 88 23114
[13] Hickey H C, Damsgarrd C D, Holmes S N, Farrer I, Jones G A C, Ritchie D A, Jacobsen C S, Hansen J B, Pepper M 2008 Appl. Phys. Lett. 92 232101
[14] Datta S and Das B 1990 Appl. Phys. Lett. 56 665
[15] Molnár B, Vasilopoulos P and Peeters F M 2005 Phys. Rev. B 72 075330
[16] Chi F and Li S S 2006 J. Appl. Phys. 100 113703
[17] An X T, Mu H Y, Xian L F and Liu J J 2012 Chin. Phys. B 21 077201
[18] An X T, Mu H Y, Xian L F and Liu J J 2012 Acta Phys. Sin. 61 157201 (in Chinese)
[19] Hirsch J E 1999 Phys. Rev. Lett. 83 1834
[20] Xing Y X, Sun Q F and Wang J 2007 Phys. Rev. B 75 075324
[21] Xing Y X, Sun Q F and Wang J 2008 Phys. Rev. B 77 115346
[22] Lü H F and Guo Y 2007 Phys. Rev. B 76 045120
[23] Lü H F and Guo Y 2008 Appl. Phys. Lett. 92 062109
[24] Chi F and Zheng J 2008 Appl. Phys. Lett. 92 062106
[25] Chi F, Zheng J and Sun L L 2008 Appl. Phys. Lett. 92 172104
[26] Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K, Maekawa S and Saitoh E 2008 Nature 455 778
[27] Bai X F, Chi F, Zheng J, Li Y N 2012 Chin. Phys. B 21 077301
[28] Frolov S M, Venkatesan A, Yu W, Folk J A and Wegscheider W 2009 Phys. Rev. Lett. 102 116802
[29] Wang D K, Sun Q F and Guo H 2004 Phys. Rev. B 69 205312
[30] Sun Q F, Xing Y X and Shen S Q 2008 Phys. Rev. B 77 195313
[31] Lu H Z and Shen S Q 2008 Phys. Rev. B 77 235309
[32] Chi F and Sun Q F 2010 Phys. Rev. B 81 075310
[33] Chi F and Dai X N 2010 Appl. Phys. Lett. 96 082102
[34] Weymann I 2010 J. Phys.: Condens. Matter 22 015301
[35] Rudzinski W 2009 J. Phys.: Condens. Matter 21 046005
[36] Sergueev N, Sun Q F and Guo H 2002 Phys. Rev. B 65 165303
[37] Zhang P, Xue Q K, Wang Y P and Xie X C 2002 Phys. Rev. Lett. 89 286803
[38] Lui C K, Wang B G and Wang J 2004 Phys. Rev. B 70 205316
[39] Souza F M, Egues J C, Jauho A P 2007 Phys. Rev. B 75 165303
Related articles from Frontiers Journals
[1] Tian-Yi Zhang, Qing Yan, and Qing-Feng Sun. Constructing Low-Dimensional Quantum Devices Based on the Surface State of Topological Insulators[J]. Chin. Phys. Lett., 2021, 38(7): 107302
[2] Gang Shi, Mingjie Zhang, Dayu Yan, Honglei Feng, Meng Yang, Youguo Shi, Yongqing Li. Anomalous Hall Effect in Layered Ferrimagnet MnSb$_{2}$Te$_{4}$[J]. Chin. Phys. Lett., 2020, 37(4): 107302
[3] Meng Ye, Cai-Juan Xia, Bo-Qun Zhang, Yue Ma. Negative Differential Resistance and Rectifying Effects of Diblock Co-Oligomer Molecule Devices Sandwiched between C$_{2}$N-$h$2D Electrodes[J]. Chin. Phys. Lett., 2019, 36(4): 107302
[4] Yu-Zhuo LV, Peng ZHAO. Spin Caloritronic Transport of Tree-Saw Graphene Nanoribbons[J]. Chin. Phys. Lett., 2019, 36(1): 107302
[5] Qiu-Shi Wang, Bin Zhang, Wei-Zhu Yi, Meng-Nan Chen, Baigeng Wang, R. Shen. Impurity Effects at Surfaces of a Photon-Dressed Bi$_2$Se$_3$ Thin Film[J]. Chin. Phys. Lett., 2018, 35(10): 107302
[6] Ze-Long He, Qiang Li, Kong-Fa Chen, Ji-Yuan Bai, Sui-Hu Dang. Fano Effect and Anti-Resonance Band in a Parallel-Coupled Double Quantum Dot System with Two Multi-Quantum Dot Chains[J]. Chin. Phys. Lett., 2018, 35(9): 107302
[7] Chu-Hong Yang, Shu-Yu Zheng, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Guang-Tong Liu, Chang-Li Yang, Li Lu. Transport Studies on GaAs/AlGaAs Two-Dimensional Electron Systems Modulated by Triangular Array of Antidots[J]. Chin. Phys. Lett., 2018, 35(7): 107302
[8] Yang Liu, Cai-Juan Xia, Bo-Qun Zhang, Ting-Ting Zhang, Yan Cui, Zhen-Yang Hu. Effect of Chemical Doping on the Electronic Transport Properties of Tailoring Graphene Nanoribbons[J]. Chin. Phys. Lett., 2018, 35(6): 107302
[9] Ayoub Kanaani, Mohammad Vakili, Davood Ajloo, Mehdi Nekoei. Current–Voltage Characteristics of the Aziridine-Based Nano-Molecular Wires: a Light-Driven Molecular Switch[J]. Chin. Phys. Lett., 2018, 35(4): 107302
[10] Dou-Dou Sun, Wen-Yong Su, Feng Wang, Wan-Xiang Feng, Cheng-Lin Heng. Electron Transport Properties of Two-Dimensional Monolayer Films from Au-P-Au to Au-Si-Au Molecular Junctions[J]. Chin. Phys. Lett., 2018, 35(1): 107302
[11] Yu-Zhuo Lv, Peng Zhao, De-Sheng Liu. Spin Caloritronic Transport of (2$\times$1) Reconstructed Zigzag MoS$_{2}$ Nanoribbons[J]. Chin. Phys. Lett., 2017, 34(10): 107302
[12] Ze-Long He, Ji-Yuan Bai, Shu-Jiang Ye, Li Li, Chun-Xia Li. Quantum Switch and Efficient Spin-Filter in a System Consisting of Multiple Three-Quantum-Dot Rings[J]. Chin. Phys. Lett., 2017, 34(8): 107302
[13] Yu-Ying Zhu, Meng-Meng Bai, Shu-Yu Zheng, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Chang-Li Yang, Guang-Tong Liu, Li Lu. Coulomb-Dominated Oscillations in Fabry–Perot Quantum Hall Interferometers[J]. Chin. Phys. Lett., 2017, 34(6): 107302
[14] Yan-Hua Li, Yong-Jian Xiong. Single-Parameter Quantum Pumping in Graphene Nanoribbons with Staggered Sublattice Potential[J]. Chin. Phys. Lett., 2017, 34(5): 107302
[15] Yu-Zhuo Lv, Peng Zhao, De-Sheng Liu. Magnetic Transport Properties of Fe-Phthalocyanine Dimer with Carbon Nanotube Electrodes[J]. Chin. Phys. Lett., 2017, 34(4): 107302
Viewed
Full text


Abstract