Chin. Phys. Lett.  2012, Vol. 29 Issue (10): 104704    DOI: 10.1088/0256-307X/29/10/104704
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Experimental Investigation of Wake-Induced Bypass Transition Control by Surface Roughness
PAN Chong, WANG Jin-Jun**, HE Guo-Sheng
Key Laboratory of Fluid Mechanics (Ministry of Education), Beihang University, Beijing 100191
Cite this article:   
PAN Chong, WANG Jin-Jun, HE Guo-Sheng 2012 Chin. Phys. Lett. 29 104704
Download: PDF(1034KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Surface roughness is experimentally used to control the flat-plate boundary layer bypass transition induced by an upstream convected two-dimensional (2D) circular cylinder wake. It is shown that the later stage of this bypass transition is successfully postponed, at the price of accelerating the earlier transition stage. A regularisation process of the hairpin vortices, which are the dominant coherent structures to promote the transition process, are observed under the influence of roughness elements. Significant scale reduction and localisation of these hairpins are achieved, which enhances the possibility of a hairpin self-annihilation process. Therefore, the cascade to large-scale structures in the later transition stage might be impeded/weakened.
Received: 20 February 2012      Published: 01 October 2012
PACS:  47.27.Cn (Transition to turbulence)  
  47.27.De (Coherent structures)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/10/104704       OR      https://cpl.iphy.ac.cn/Y2012/V29/I10/104704
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
PAN Chong
WANG Jin-Jun
HE Guo-Sheng
[1] Tiederman W G, Luchik T S and Bogard D G 1985 J. Fluid Mech. 156 419
[2] Bechert D W, Bruse M, Hage W, Hoeven J G T V D and Hoppe G 1997 J. Fluid Mech. 338 59
[3] Choi K S 2002 Phys. Fluids 14 2530
[4] Lundell F 2007 J. Fluid Mech. 585 41
[5] Adrian R J 2007 Phys. Fluids 19 041301
[6] Chen S Y, Ecke R E, Eyink G L, Rivera M, Wan M P and Xiao Z L 2006 Phys. Rev. Lett. 96 084502
[7] Waleffe F 1997 Phys. Fluids 9 883
[8] Sirovich L and Karlsson S 1997 Nature 388 21
[9] Choi K S 2006 Nature 440 754
[10] Kachanov Y S and Tararykin O I 1987 Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Tekh. Nauk. 18 9 (in Russian)
[11] Fransson J H M, Talamelli A, Brandt L and Cossu C 2006 Phys. Rev. Lett. 96 064501
[12] Morkovin M V 1969 On the Many Faces of Transition in Viscous Drag Reduction ed Wells G S (New York: Plenum Press) pp 1–31
[13] Ellingsen T and Palm E 1975 Phys. Fluids 18 487
[14] Pan C, Wang J J, Zhang P F and Feng L H 2008 J. Fluid Mech. 603
[15] Wang J J, Zhang C and Pan C 2011 J. Visual. 14(1) 53
[16] Zhang C, Pan C and Wang J J 2011 Exp. Fluids 51 1343
[17] Scarano F and Riethmuller M L 2000 Exp. Fluids 29 S051
[18] Haller G 2001 Physica D 149 248
[19] Shadden S C, Lekien F and Marsden J E 2005 Physica D 212 271
[20] Haller G 2005 J. Fluid Mech. 525 1
[21] Pan C, Wang J J and Zhang C 2009 Sci. Chin. G 52 248
[22] Hon T L and Walker J D A 1991 Comput. Fluids 20 343
[23] Williamson C H K 1996 Annu. Rev. Fluid Mech. 28 477
Related articles from Frontiers Journals
[1] Jia Wang, Li Duan, Qi Kang. Oscillatory and Chaotic Buoyant-Thermocapillary Convection in the Large-Scale Liquid Bridge[J]. Chin. Phys. Lett., 2017, 34(7): 104704
[2] LI Feng-Chen, ZHANG Hong-Na, CAO Yang, KUNUGI Tomoaki, KINOSHITA Haruyuki, OSHIMA Marie. A Purely Elastic Instability and Mixing Enhancement in a 3D Curvilinear Channel Flow[J]. Chin. Phys. Lett., 2012, 29(9): 104704
[3] HAN Jian, JIANG Nan. Dynamics Evolution Investigation of Mack Mode Instability in a Hypersonic Boundary Layer by Bicoherence Spectrum Analysis[J]. Chin. Phys. Lett., 2012, 29(7): 104704
[4] TANG Zhan-Qi, JIANG Nan, ** . TR PIV Experimental Investigation on Bypass Transition Induced by a Cylinder Wake[J]. Chin. Phys. Lett., 2011, 28(5): 104704
[5] LIU Xiao-Bing, CHEN Zheng-Qing, LIU Chao-Qun. Late-Stage Vortical Structures and Eddy Motions in a Transitional Boundary Layer[J]. Chin. Phys. Lett., 2010, 27(2): 104704
[6] HAN Jian, JIANG Nan .. Wavelet Cross-Spectrum Analysis of Multi-Scale Disturbance Instability and Transition on Sharp Cone Hypersonic Boundary Layer[J]. Chin. Phys. Lett., 2008, 25(5): 104704
[7] AA Yan, CAO Zhong-Hua, HU Wen-Rui. Transition to Chaos in the Floating Half Zone Convection[J]. Chin. Phys. Lett., 2007, 24(2): 104704
[8] ZHOU Ying, LI Xin-Liang, FU De-Xun, MA Yan-Wen. Coherent Structures in Transition of a Flat-Plate Boundary Layer at Ma =0.7[J]. Chin. Phys. Lett., 2007, 24(1): 104704
[9] HAO Peng-Fei, YAO Zhao-Hui, HE Feng, ZHU Ke-Qin. Experimental Study on Transitional Flow in a Circular Microtube[J]. Chin. Phys. Lett., 2006, 23(10): 104704
[10] GAO Hui, FU De-Xun, MA Yan-Wen, LI Xin-Liang. Direct Numerical Simulation of Supersonic Turbulent Boundary Layer Flow[J]. Chin. Phys. Lett., 2005, 22(7): 104704
[11] LI Cun-Biao, FU Song. Formation of the Chain of Ring-Like Vortices in a Transitional Boundary Layer[J]. Chin. Phys. Lett., 2000, 17(8): 104704
Viewed
Full text


Abstract