Chin. Phys. Lett.  2012, Vol. 29 Issue (10): 104205    DOI: 10.1088/0256-307X/29/10/104205
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Stable and High OSNR Compound Linear-Cavity Single-Longitudinal-Mode Erbium-Doped Silica Fiber Laser Based on an Asymmetric Four-Cavity Structure
FENG Ting1, YAN Feng-Ping1**, LI Qi1, PENG Wan-Jing1, FENG Su-Chun1, WEN Xiao-Dong1, LIU Peng2, TAN Si-Yu1
1Key Lab of All Optical Network and Advanced Telecommunication Network of Ministry of Education, Institute of Lightwave Technology, Beijing Jiaotong University, Beijing 100044
2Department of Physics, Xingtai College, Xingtai 054001
Cite this article:   
FENG Ting, YAN Feng-Ping, LI Qi et al  2012 Chin. Phys. Lett. 29 104205
Download: PDF(484KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose a stable and high optical signal-to-noise ratio (OSNR) compound linear-cavity single-longitudinal-mode (SLM) erbium-doped silica fiber laser. It consists of three uniform fiber Bragg gratings (FBGs) and two fiber couplers to form a simple asymmetric four-cavity structure to select the longitudinal mode. The stable SLM operation at the wavelength of 1544.053 nm with a 3 dB bandwidth of 0.014 nm and an OSNR of ~60 dB was verified experimentally. Under laboratory conditions, a power fluctuation performance of less than 0.05 dB for 5 h and wavelength variation of less than 0.01 nm for about 150 min is demonstrated. Finally, the characteristic of laser output power as a function of pump power is investigated. The proposed system provides a simple and cost-effective approach to realize a stable SLM fiber laser.
Received: 28 May 2012      Published: 01 October 2012
PACS:  42.55.Wd (Fiber lasers)  
  42.81.-i (Fiber optics)  
  42.60.-v (Laser optical systems: design and operation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/10/104205       OR      https://cpl.iphy.ac.cn/Y2012/V29/I10/104205
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
FENG Ting
YAN Feng-Ping
LI Qi
PENG Wan-Jing
FENG Su-Chun
WEN Xiao-Dong
LIU Peng
TAN Si-Yu
[1] Dong X L, Xiao H, Ma Y X, Zhou P and Guo S F 2012 Acta Phys. Sin. 61 064207 (in Chinese)
[2] Han X, Feng G Y, Wu C L, Jiang D S and Zhou S H 2012 Acta Phys. Sin. 61 114204 (in Chinese)
[3] Zhang W N, Li C, Mo S P, Yang C S, Feng Z M, Xu S H, Shen S X, Peng M Y, Zhang Q Y and Yang Z M 2012 Chin. Phys. Lett. 29 084205
[4] Li Z, Zhou J, He B, Liu H K, Liu C, Wei Y R, Dong J X and Lou Q H 2012 Chin. Phys. Lett. 29 074203
[5] Zhou R L, Zhao J, Yuan C, Chen Z Y, Ju Y L and Wang Y Z 2012 Chin. Phys. Lett. 29 064201
[6] Feng T, Yan F P, Peng W J, Li Q, Tan S Y, Wang J and Wen X D 2012 Opt. Fiber Technol. 18 204
[7] Cheng Y, Kringlebotn J T, Loh W H, Laming R I and Payne D N 1995 Opt. Lett. 20 875
[8] Wang T S, Guo Y B, Li J, Sun Y D, Bai B, Li X B and Hu G J 2004 Chin. J. Lasers 31 1161 (in Chinese)
[9] Wang T S, Guo Y B and Wang K 2007 Microwave Opt. Technol. Lett. 49 1494
[10] Kieu K and Mansuripur M 2007 Opt. Lett. 32 244
[11] Nilsson J, Alam S U, Alvarez-Chavez J A, Turner P W, Clarkson W A and Grudinin A B 2003 IEEE J. Quantum Electron. 39 987
[12] Shen Y, Qiu Y, Wu B, Zhao W, Chen S, Sun T and Grattan K T V 2007 Opt. Express 15 363
[13] Polynkin A, Polynkin P, Mansuripur M and Peyghambarian N 2005 Opt. Express 13 3179
[14] Sch?ulzgen A, Li L, Temyanko V L, Suzuki S, Moloney J V and Peyghambarian N 2006 Opt. Express 14 7087
[15] Xu O, Lu S H, Feng S C, Tan Z W, Ning T G and Jan S S 2009 Opt. Commun. 282 962
[16] Zhao M, Guo Y B, Wang T S and Shen X G 2009 Front. Optoelectron. Chin. 2 81 (in Chinese)
[17] Zhang J L, Yue C Y, Schinn G W, Clements W R L and Lit J W Y 1996 J. Lightwave Technol. 14 104
[18] Park N, Dawson J W, Vahala K J and Miller C 1991 Appl. Phys. Lett. 59 2369
[19] Chen X F, Yao J P, Zeng F and Deng Z C 2005 IEEE Photon. Technol. Lett. 17 1390
[20] Cheng X P, Shum P, Tse C H, Zhou J L, Tang M, Tan W C, Wu R F and Zhang J 2008 IEEE Photon. Technol. Lett. 20 976
[21] Lee C C, Chen Y K and Liaw S K 1998 Opt. Lett. 23 358
[22] Shinji Y and Gregory J C 1999 J. Lightwave Technol. 17 509
[23] Lee C C and Chi S 2000 Opt. Lett. 25 1774
[24] Guo Y B and Huo J Y 2008 Optical Fiber Laser and Its Applications 1st edn (Beijing: Science Press) p 56 (in Chinese)
Related articles from Frontiers Journals
[1] Wen-Wen Cui, Xiao-Wei Xing, Yue-Qian Chen, Yue-Jia Xiao, Han Ye, and Wen-Jun Liu. Tunable Dual-Wavelength Fiber Laser in a Novel High Entropy van der Waals Material[J]. Chin. Phys. Lett., 2023, 40(2): 104205
[2] Ming-Xiao Wang, Ping-Xue Li, Yang-Tao Xu, Yun-Chen Zhu, Shun Li, and Chuan-Fei Yao. An All-Fiberized Chirped Pulse Amplification System Based on Chirped Fiber Bragg Grating Stretcher and Compressor[J]. Chin. Phys. Lett., 2022, 39(2): 104205
[3] Yuan-Yuan Yan  and Wen-Jun Liu. Soliton Rectangular Pulses and Bound States in a Dissipative System Modeled by the Variable-Coefficients Complex Cubic-Quintic Ginzburg–Landau Equation[J]. Chin. Phys. Lett., 2021, 38(9): 104205
[4] Kai Ning, Lei Hou, Song-Tao Fan, Lu-Lu Yan, Yan-Yan Zhang, Bing-Jie Rao, Xiao-Fei Zhang, Shou-Gang Zhang, Hai-Feng Jiang. An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy *[J]. Chin. Phys. Lett., 0, (): 104205
[5] Kai Ning, Lei Hou, Song-Tao Fan, Lu-Lu Yan, Yan-Yan Zhang, Bing-Jie Rao, Xiao-Fei Zhang, Shou-Gang Zhang, Hai-Feng Jiang. An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy[J]. Chin. Phys. Lett., 2020, 37(6): 104205
[6] H. Ahmad, M. F. Ismail, S. N. Aidit. Optically Modulated Tunable O-Band Praseodymium-Doped Fluoride Fiber Laser Utilizing Multi-Walled Carbon Nanotube Saturable Absorber[J]. Chin. Phys. Lett., 2019, 36(10): 104205
[7] N. F. Zulkipli, M. Batumalay, F. S. M. Samsamnun, M. B. H. Mahyuddin, E. Hanafi, T. F. T. M. N. Izam, M. I. M. A. Khudus, S. W. Harun. Nanosecond Pulses Generation with Samarium Oxide Film Saturable Absorber[J]. Chin. Phys. Lett., 2019, 36(7): 104205
[8] R. Z. R. R. Rosdin, M. T. Ahmad, A. R. Muhammad, Z. Jusoh, H. Arof, S. W. Harun. Nanosecond Pulse Generation with Silver Nanoparticle Saturable Absorber[J]. Chin. Phys. Lett., 2019, 36(5): 104205
[9] Lu Li, Rui-Dong Lv, Si-Cong Liu, Zhen-Dong Chen, Jiang Wang, Yong-Gang Wang, Wei Ren. Using Reduced Graphene Oxide to Generate Q-Switched Pulses in Er-Doped Fiber Laser[J]. Chin. Phys. Lett., 2018, 35(11): 104205
[10] Gen Li, Yong Zhou, Shu-Jie Li, PeiJun Yao, Wei-qing Gao, Chun Gu, Li-Xin Xu. Synchronously Pumped Mode-Locked 1.89μm Tm-Doped Fiber Laser with High Detuning Toleration[J]. Chin. Phys. Lett., 2018, 35(11): 104205
[11] M. F. M. Rusdi, M. B. H. Mahyuddin, A. A. Latiff , H. Ahmad, S. W. Harun. Q-Switched Erbium-Doped Fiber Laser Using Cadmium Selenide Coated onto Side-Polished D-Shape Fiber as Saturable Absorber[J]. Chin. Phys. Lett., 2018, 35(10): 104205
[12] Guan Wang, Lixin Xu, Chun Gu. Passive, Stable and Order-Adjustable SBS Q-Switching Fiber Laser[J]. Chin. Phys. Lett., 2018, 35(8): 104205
[13] Qi-Rong Xiao, Jia-Ding Tian, Yu-Sheng Huang, Xue-Jiao Wang, Ze-Hui Wang, Dan Li, Ping Yan, Ma-Li Gong. Internal Features of Fiber Fuse in a Yb-Doped Double-Clad Fiber at 3kW[J]. Chin. Phys. Lett., 2018, 35(5): 104205
[14] Lei Zhao, Pei-Jun Yao, Chun Gu, Li-Xin Xu. Raman-Assisted Passively Mode-Locked Fiber Laser[J]. Chin. Phys. Lett., 2018, 35(4): 104205
[15] A. Nady, M. F. Baharom, A. A. Latiff, S. W. Harun. Mode-Locked Erbium-Doped Fiber Laser Using Vanadium Oxide as Saturable Absorber[J]. Chin. Phys. Lett., 2018, 35(4): 104205
Viewed
Full text


Abstract