FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Stable and High OSNR Compound Linear-Cavity Single-Longitudinal-Mode Erbium-Doped Silica Fiber Laser Based on an Asymmetric Four-Cavity Structure |
FENG Ting1, YAN Feng-Ping1**, LI Qi1, PENG Wan-Jing1, FENG Su-Chun1, WEN Xiao-Dong1, LIU Peng2, TAN Si-Yu1 |
1Key Lab of All Optical Network and Advanced Telecommunication Network of Ministry of Education, Institute of Lightwave Technology, Beijing Jiaotong University, Beijing 100044 2Department of Physics, Xingtai College, Xingtai 054001
|
|
Cite this article: |
FENG Ting, YAN Feng-Ping, LI Qi et al 2012 Chin. Phys. Lett. 29 104205 |
|
|
Abstract We propose a stable and high optical signal-to-noise ratio (OSNR) compound linear-cavity single-longitudinal-mode (SLM) erbium-doped silica fiber laser. It consists of three uniform fiber Bragg gratings (FBGs) and two fiber couplers to form a simple asymmetric four-cavity structure to select the longitudinal mode. The stable SLM operation at the wavelength of 1544.053 nm with a 3 dB bandwidth of 0.014 nm and an OSNR of ~60 dB was verified experimentally. Under laboratory conditions, a power fluctuation performance of less than 0.05 dB for 5 h and wavelength variation of less than 0.01 nm for about 150 min is demonstrated. Finally, the characteristic of laser output power as a function of pump power is investigated. The proposed system provides a simple and cost-effective approach to realize a stable SLM fiber laser.
|
|
Received: 28 May 2012
Published: 01 October 2012
|
|
|
|
|
|
[1] Dong X L, Xiao H, Ma Y X, Zhou P and Guo S F 2012 Acta Phys. Sin. 61 064207 (in Chinese) [2] Han X, Feng G Y, Wu C L, Jiang D S and Zhou S H 2012 Acta Phys. Sin. 61 114204 (in Chinese) [3] Zhang W N, Li C, Mo S P, Yang C S, Feng Z M, Xu S H, Shen S X, Peng M Y, Zhang Q Y and Yang Z M 2012 Chin. Phys. Lett. 29 084205 [4] Li Z, Zhou J, He B, Liu H K, Liu C, Wei Y R, Dong J X and Lou Q H 2012 Chin. Phys. Lett. 29 074203 [5] Zhou R L, Zhao J, Yuan C, Chen Z Y, Ju Y L and Wang Y Z 2012 Chin. Phys. Lett. 29 064201 [6] Feng T, Yan F P, Peng W J, Li Q, Tan S Y, Wang J and Wen X D 2012 Opt. Fiber Technol. 18 204 [7] Cheng Y, Kringlebotn J T, Loh W H, Laming R I and Payne D N 1995 Opt. Lett. 20 875 [8] Wang T S, Guo Y B, Li J, Sun Y D, Bai B, Li X B and Hu G J 2004 Chin. J. Lasers 31 1161 (in Chinese) [9] Wang T S, Guo Y B and Wang K 2007 Microwave Opt. Technol. Lett. 49 1494 [10] Kieu K and Mansuripur M 2007 Opt. Lett. 32 244 [11] Nilsson J, Alam S U, Alvarez-Chavez J A, Turner P W, Clarkson W A and Grudinin A B 2003 IEEE J. Quantum Electron. 39 987 [12] Shen Y, Qiu Y, Wu B, Zhao W, Chen S, Sun T and Grattan K T V 2007 Opt. Express 15 363 [13] Polynkin A, Polynkin P, Mansuripur M and Peyghambarian N 2005 Opt. Express 13 3179 [14] Sch?ulzgen A, Li L, Temyanko V L, Suzuki S, Moloney J V and Peyghambarian N 2006 Opt. Express 14 7087 [15] Xu O, Lu S H, Feng S C, Tan Z W, Ning T G and Jan S S 2009 Opt. Commun. 282 962 [16] Zhao M, Guo Y B, Wang T S and Shen X G 2009 Front. Optoelectron. Chin. 2 81 (in Chinese) [17] Zhang J L, Yue C Y, Schinn G W, Clements W R L and Lit J W Y 1996 J. Lightwave Technol. 14 104 [18] Park N, Dawson J W, Vahala K J and Miller C 1991 Appl. Phys. Lett. 59 2369 [19] Chen X F, Yao J P, Zeng F and Deng Z C 2005 IEEE Photon. Technol. Lett. 17 1390 [20] Cheng X P, Shum P, Tse C H, Zhou J L, Tang M, Tan W C, Wu R F and Zhang J 2008 IEEE Photon. Technol. Lett. 20 976 [21] Lee C C, Chen Y K and Liaw S K 1998 Opt. Lett. 23 358 [22] Shinji Y and Gregory J C 1999 J. Lightwave Technol. 17 509 [23] Lee C C and Chi S 2000 Opt. Lett. 25 1774 [24] Guo Y B and Huo J Y 2008 Optical Fiber Laser and Its Applications 1st edn (Beijing: Science Press) p 56 (in Chinese) |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|