Chin. Phys. Lett.  2012, Vol. 29 Issue (10): 104204    DOI: 10.1088/0256-307X/29/10/104204
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Microscopic Investigation into the Optically Pumped Polymer Lasers Based on Distributed Feedback
ZHAI Tian-Rui, ZHANG Xin-Ping**, DOU Fei
Institute of Information Photonics Technology and College of Applied Sciences, Beijing University of Technology, Beijing 100124
Cite this article:   
ZHAI Tian-Rui, ZHANG Xin-Ping, DOU Fei 2012 Chin. Phys. Lett. 29 104204
Download: PDF(1375KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Polymeric semiconductors spin-coated onto the photoresist grating form discontinuously distributed flocci, which do not fill grating grooves with nanoscale widths. Thus, the polymer layer neither forms a continuous gain channel nor creates a waveguide that enhances the distributed feedback (DFB) mechanism provided by the grating structures. This is verified by the microscopic and spectroscopic investigations on the topographic surface of the polymer-covered grating as it is etched layer by layer using oxygen plasma. This gives more insights into the mechanisms involved in optically pumped polymer lasers and provides new guidance for constructing DFB lasers.
Received: 24 April 2012      Published: 01 October 2012
PACS:  42.25.Hz (Interference)  
  42.55.-f (Lasers)  
  42.70.Jk (Polymers and organics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/10/104204       OR      https://cpl.iphy.ac.cn/Y2012/V29/I10/104204
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHAI Tian-Rui
ZHANG Xin-Ping
DOU Fei
[1] Tessler N, Denton G and Friend R 1996 Nature 382 695
[2] Holzer W, Penzkofer A, Gong S et al 1996 Adv. Mater. 8 974
[3] Scherf U, Riechel S, Lemmer U and Mahrt R 2001 Curr. Opin. Solid State Mater. Sci. 5 143
[4] Bauer C, Giessen H, Schnabel B et al 2001 Adv. Mater. 13 1161
[5] Song M H, Wenger B and Friend R 2008 J. Appl. Phys. 104 033107
[6] Chen S J, Shi J W, Zhai T R et al 2011 Chin. Phys. Lett. 28 104204
[7] Zhai T R, Zhang X P, Pang Z G et al 2011 Nano Lett. 11 4295
[8] Zhai T R, Zhang X P, Pang Z G 2011 Opt. Express 19 6487
[9] Kranzelbinder G and Leising G 2000 Rep. Prog. Phys. 63 729
[10] Kogelnik H and Shank C 1972 J. Appl. Phys. 43 2327
[11] Berggren M, Dodabalapur A, Slusher R et al 1998 Appl. Phys. Lett. 72 410
[12] Pisignano D, Persano L, Cingolani R et al 2004 Appl. Phys. Lett. 84 1365
[13] Lawrence J, Turnbull G and Samuel I 2003 Appl. Phys. Lett. 82 4023
[14] Salerno M, Gigli G, Zavelani-Rossi M et al 2007 Appl. Phys. Lett. 90 111110
[15] Zhai T R, Zhang X P, Pang Z G and Dou F 2011 Adv. Mater. 23 1860
[16] Turnbull G, Andrew P, Jory M et al 2001 Phys. Rev. B 64 125122
[17] Navarro-Fuster V, Calzado E, Boj P et al 2010 Appl. Phys. Lett. 97 171104
[18] Heliotis G, Xia R, Turnbull G et al 2004 Adv. Funct. Mater. 14 91
[19] Wang H, Zhu H L, Jia L H et al 2008 Chin. Phys. Lett. 25 4162
[20] Zhang S M, Zhang D K and Ma D G 2008 Chin. Phys. Lett. 25 1690
Related articles from Frontiers Journals
[1] Zhiqiang Ren , Rong Wen , and J. F. Chen. Photon Coalescence in a Lossy Non-Hermitian Beam Splitter[J]. Chin. Phys. Lett., 2020, 37(8): 104204
[2] Zhao-Wang Wu, Ye-Wan Ma, Li-Hua Zhang, Xun-Chang Yin, Sheng-Bao Zhan. Optical Tunability of Silver-Dielectric-Silver Multi-Layered Cylindrical Nanotubes Using Quasi-Static Approximation[J]. Chin. Phys. Lett., 2018, 35(11): 104204
[3] Li-Jun Yang, Yan Li. Pascal Realization by Comb-Spectral-Interferometry Based Refractometer[J]. Chin. Phys. Lett., 2018, 35(10): 104204
[4] Jie-Hui Huang, Tao Peng, Luo-Jia Wang, Shi-Yao Zhu. Simultaneous Measurement of Fringe Visibility and Path Predictability of Wave-Particle Duality[J]. Chin. Phys. Lett., 2018, 35(8): 104204
[5] Hai-Sha Niu, Lian-Qing Zhu, Jian-Jun Song. Laser Intensity Variation in Amplitude and Phase Induced by Elliptically Polarized Feedback[J]. Chin. Phys. Lett., 2018, 35(5): 104204
[6] Gen Yue, Yu Lei, Jun-Hui Die, Hai-Qiang Jia, Hong Chen. Fabrication of 4-Inch Nano Patterned Wafer with High Uniformity by Laser Interference Lithography[J]. Chin. Phys. Lett., 2018, 35(5): 104204
[7] Xian-Ping Luo, Fei-Ru Wang, Chun-Lei Chen, Ling-Li Zhang, Lei Wang, Wei-Min Sun, Yong-Jun Liu. A Novel Mach–Zehnder Interferometer Based on Hybrid Liquid Crystal–Photonic Crystal Fiber[J]. Chin. Phys. Lett., 2017, 34(12): 104204
[8] Chen Li, Tian-Wei Zhou, Jing-Gang Xiang, Yue-Yang Zhai, Xu-Guang Yue, Shi-Feng Yang, Wei Xiong, Xu-Zong Chen. Two-Dimensional Talbot Effect with Atomic Density Gratings[J]. Chin. Phys. Lett., 2017, 34(8): 104204
[9] Jun Dong, Zhong-Gui Lu, Bo Zhang, Zhi-Tao Peng, Zhi-Hong Sun, Yan-Wen Xia, Hao-Yu Yuan, Jun Tang, De-Yan Zhu, Hua Liu, Jia-Kun Lv. Single-Shot Measurement of Transient Phase Shift Induced by Laser Wake[J]. Chin. Phys. Lett., 2017, 34(5): 104204
[10] Yu Si, Ling-Jun Kong, Yu Zhang, Zhi-Cheng Ren, Yue Pan, Chenghou Tu, Yongnan Li, Hui-Tian Wang. Spatial-Variant Geometric Phase of Hybrid-Polarized Vector Optical Fields[J]. Chin. Phys. Lett., 2017, 34(4): 104204
[11] A. Ben-Israel, L. Knips, J. Dziewior, J. Meinecke, A. Danan, H. Weinfurter, L. Vaidman. An Improved Experiment to Determine the 'Past of a Particle' in the Nested Mach–Zehnder Interferometer[J]. Chin. Phys. Lett., 2017, 34(2): 104204
[12] Fu Sun, Dong Wei, Gui-Zhong Zhang, Xin Ding, Jian-Quan Yao. Dynamic Interference Photoelectron Spectra in Double Ionization: Numerical Simulation of 1D Helium[J]. Chin. Phys. Lett., 2016, 33(12): 104204
[13] MA Ye-Wan, WU Zhao-Wang, ZHANG Li-Hua, LIU Wan-Fang, ZHANG Jie. Theoretical Study of Local Surface Plasmon Resonances on a Dielectric-Ag Core-Shell Nanosphere Using the Discrete-Dipole Approximation Method[J]. Chin. Phys. Lett., 2015, 32(09): 104204
[14] LI Fu, Hashmi F. A., ZHANG Jun-Xiang, ZHU Shi-Yao. An Ideal Experiment to Determine the 'Past of a Particle' in the Nested Mach–Zehnder Interferometer[J]. Chin. Phys. Lett., 2015, 32(5): 104204
[15] WEN Feng, ZHANG Xun, YUAN Chen-Zhi, LI Chang-Biao, WANG Jing-Da, ZHANG Yan-Peng. Visibility and Resolution Enhancement of Fourth-Order Ghost Interference with Thermal Light[J]. Chin. Phys. Lett., 2015, 32(01): 104204
Viewed
Full text


Abstract