Chin. Phys. Lett.  2012, Vol. 29 Issue (10): 100701    DOI: 10.1088/0256-307X/29/10/100701
GENERAL |
A High Sensitivity Laser-Pumped Cesium Magnetometer
HUANG Kai-Kai, LI Nan, LU Xuan-Hui**
Institute of Optics, Department of Physics, Zhejiang University, Hangzhou 310027
Cite this article:   
HUANG Kai-Kai, LI Nan, LU Xuan-Hui 2012 Chin. Phys. Lett. 29 100701
Download: PDF(524KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An atomic magnetometer based on optically detected magnetic resonance is investigated and demonstrated experimentally. We build an 894 nm external cavity diode laser which is frequency locked to the F=4→F'=3 transition of Cs D1 line with DAVLL spectroscopy. With the phase-locked loop, the frequency of the rf coils is actively locked to the Larmor frequency and the magnetometer tracks the magnetic field variations in a phase coherent manner. An ultimate sensitivity of 19 fT/Hz1/2 and an intrinsic sensitivity of 8.6 pT/Hz1/2 in the magnetic environment which is close to geomagnetic field have been achieved with the spatial resolution smaller than 2 cm.
Received: 07 March 2012      Published: 01 October 2012
PACS:  07.55.Ge (Magnetometers for magnetic field measurements)  
  33.80.Be (Level crossing and optical pumping)  
  33.80.+i  
  76.70.Hb (Optically detected magnetic resonance (ODMR))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/10/100701       OR      https://cpl.iphy.ac.cn/Y2012/V29/I10/100701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HUANG Kai-Kai
LI Nan
LU Xuan-Hui
[1] Bison G, Wynands R and Weis A 2003 Appl. Phys. B 76 325
[2] Gomez C et al 2007 Comput. Methods Prog. Biomed. 87 239
[3] Sternickel K and Braginski A I 2006 Supercond. Sci. Technol. 19 S160
[4] Groeger S et al 2006 Sens. Actuators A 129 1
[5] Xu S et al 2008 Phys. Rev. A 78 013404
[6] Sarma B S P, Verma B K and Satyanarayana S V 1999 Geophysics 64 1735
[7] Mende S B et al 2008 Space Sci. Rev. 141 357
[8] Russell C T et al 2008 Space Sci. Rev. 141 389
[9] Turkakin H, Marchand R and Kale Z C 2008 J. Geophys. Res. 113 A11210
[10] Carreon H 2008 Wear 265 255
[11] Zivotsky O et al 2008 J. Magn. Magn. Mater. 320 1535
[12] Bonavolonta C et al 2007 IEEE Trans. Appl. Supercond. 17 772
[13] KurodaM, Yamanaka S and Isobe Y 2005 NDT E Int. 38 53
[14] Tralshawala N, Claycomb J R and Miller J H 1997 Appl. Phys. Lett. 71 1573
[15] Kanorsky S et al 1996 Phys. Rev. A 54 R1010
[16] Corwin K L et al 1998 Appl. Opt. 37 3295
[17] Zhang X et al 2012 Chin. Phys. Lett. 29 074206
[18] Qi X H et al 2009 Chin. Phys. Lett. 26 044205
[19] Rife D C and Boorstyn R R 1974 IEEE Trans. Inf. Theory 20 591
Related articles from Frontiers Journals
[1] Haodong Wang, Peihan Lei, Xiaoyu Mao, Xi Kong, Xiangyu Ye, Pengfei Wang, Ya Wang, Xi Qin, Jan Meijer, Hualing Zeng, Fazhan Shi, and Jiangfeng Du. Magnetic Phase Transition in Two-Dimensional CrBr$_3$ Probed by a Quantum Sensor[J]. Chin. Phys. Lett., 2022, 39(4): 100701
[2] Guobin Chen, Yang Hui, Junci Sun, Wenhao He, and Guanxiang Du. Rapid Measurement and Control of Nitrogen-Vacancy Center-Axial Orientation in Diamond Particles[J]. Chin. Phys. Lett., 2020, 37(11): 100701
[3] Hai-Feng Dong, Xiao-Fei Wang, Ji-Min Li, Jing-Ling Chen, Yuan Ren. An Atomic Magnetometer with Spin-Projection Noise Proportional to $\sqrt{{T_2}}$[J]. Chin. Phys. Lett., 2019, 36(2): 100701
Viewed
Full text


Abstract