Chin. Phys. Lett.  2012, Vol. 29 Issue (10): 100601    DOI: 10.1088/0256-307X/29/10/100601
GENERAL |
Measurement of Optical Frequency Stability by Using Spectral-Hole Burning
WANG Wei1,2**, MA Xiu-Rong1,2, CHEN Lei1,2, ZHANG Shuang-Gen2, ZHAO Jian1,2
1Engineering Research Center on Communication Devices (Ministry of Education), School of Computer and Communication Engineering, Tianjin University of Technology, Tianjin 300384
2Tianjin Key Laboratory of Film Electronic and Communication Device, School of Electronic Information Engineering, Tianjin University of Technology, Tianjin 300384
Cite this article:   
WANG Wei, MA Xiu-Rong, CHEN Lei et al  2012 Chin. Phys. Lett. 29 100601
Download: PDF(467KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A method of measuring laser frequency stability is proposed by using the spectral-hole-burning technique. The power spectra of the measured laser can be recorded as a spectral hole, and the engraving time of the spectral hole is mapped into the frequency of the measured laser. Frequency fluctuation can be expressed by spectral hole frequency variation with different engraving times. By using the proposed method, the frequency stability of the external-cavity diode laser is measured to be 2.22×10?9 with an integration time of 20 ms. The frequency stability measurement resolution reaches 14 kHz and the repetition rate is 50 Hz. Compared to the conventional method, it avoids the need for a high stability reference laser source.
Received: 31 May 2012      Published: 01 October 2012
PACS:  06.30.Ft (Time and frequency)  
  06.30.-k (Measurements common to several branches of physics and astronomy)  
  42.60.Pk (Continuous operation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/10/100601       OR      https://cpl.iphy.ac.cn/Y2012/V29/I10/100601
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Wei
MA Xiu-Rong
CHEN Lei
ZHANG Shuang-Gen
ZHAO Jian
[1] Young B C, Cruz F C, Itano W M and Bergquist J C 1999 Appl. Phys. B 82 3799
[2] Nevsky A Y, Eichenseer M, Zanthier J V and Walther H 2002 Opt. Commun. 210 91
[3] Tarallo M G, Poli N, Schioppo M, Sutyrin D and Tino G M 2011 Appl. Phys. B 103 17
[4] Ozdur I, Mandridis D, Mohammad U P, Akbulut M, Hoghooghi N and Delfyett P J 2011 IEEE Photon. Technol. Lett. 23 263
[5] Mitsunaga M 1992 Opt. Quantum Electron. 24 1137
[6] Thiela C W, Bottger T and Cone R L 2011 J. Lumin. 131 353
[7] Zhao L Z, Qin Y, Lu Z Z and Nie Y X 1997 Acta Phys. Sin. 46 1487 (in Chinese)
[8] Li Y Z, Hemmer P, Kim C, Zhang H L and Wang L H 2008 Opt. Lett. 16 14862
[9] Merkel K D, Mohan R K, Cole Z, Chang T, Olson A and Babbitt W R 2004 J. Lumin. 107 62
[10] Barber Z W, Harrington C, Thiel C W, Babbitt W R, Mohan R K 2010 J. Lumin. 130 1614
[11] Trommsdorff H P, Corval A and Laue L V 1995 Pure Appl. Chem. 67 191
[12] Strickland N M, Sellin P B, Sun Y, Carlsten J L and Cone R L 2000 Phys. Rev. B 62 1473
[13] Guillaume G, Chauve A, Crozatier V, Lorgeré I, Gou?t J L L and Bretenaker F 2007 J. Opt. Soc. Am. B 24 457
[14] Bjorklund G C and Levenson M D 1983 Appl. Phys. B 32 145
[15] Black E D 2001 Am. J. Phys. 69 79
Related articles from Frontiers Journals
[1] Bing-Kun Lu, Zhen Sun, Tao Yang, Yi-Ge Lin, Qiang Wang, Ye Li, Fei Meng, Bai-Ke Lin, Tian-Chu Li, and Zhan-Jun Fang. Improved Evaluation of BBR and Collisional Frequency Shifts of NIM-Sr2 with $7.2 \times 10^{-18}$ Total Uncertainty[J]. Chin. Phys. Lett., 2022, 39(8): 100601
[2] Xiang Zhang, Xue Deng, Qi Zang, Dongdong Jiao, Jing Gao, Dan Wang, Qian Zhou, Jie Liu, Guanjun Xu, Ruifang Dong, Tao Liu, and Shougang Zhang. Coherent Optical Frequency Transfer via a 490 km Noisy Fiber Link[J]. Chin. Phys. Lett., 2022, 39(4): 100601
[3] Dong-Jie Wang, Xiang Zhang, Jie Liu, Dong-Dong Jiao, Xue Deng, Jing Gao, Qi Zang, Dan Wang, Tao Liu, Rui-Fang Dong, and Shou-Gang Zhang. Novel Polarization Control Approach to Long-Term Fiber-Optic Frequency Transfer[J]. Chin. Phys. Lett., 2020, 37(9): 100601
[4] Si-Jia Chao, Kai-Feng Cui, Shao-Mao Wang, Jian Cao, Hua-Lin Shu, Xue-Ren Huang. Observation of $^1\!S_0$$\rightarrow$$^3\!P_0$ Transition of a $^{40}$Ca$^+$-$^{27}$Al$^+$ Quantum Logic Clock[J]. Chin. Phys. Lett., 2019, 36(12): 100601
[5] Wen-Bing Li, Qiang Hao, Yuan-Bo Du, Shao-Qing Huang, Peter Yun, Ze-Huang Lu. Demonstration of a Sub-Sampling Phase Lock Loop Based Microwave Source for Reducing Dick Effect in Atomic Clocks[J]. Chin. Phys. Lett., 2019, 36(7): 100601
[6] Chao-qun Ma, Li-Fei Wu, Jiao Gu, Yan-He Chen, Guo-Qing Chen. Delay Effect on Coherent Transfer of Optical Frequency Based on a Triple-Pass Scheme[J]. Chin. Phys. Lett., 2018, 35(8): 100601
[7] Yu-Xin Zhuang, Dai-Ting Shi, Da-Wei Li, Yi-Gen Wang, Xiao-Na Zhao, Jian-Ye Zhao, Zhong Wang. Erratum: An Accurate Frequency Control Method and Atomic Clock Based on Coherent Population Beating Phenomenon [Chin. Phys. Lett. 33(2016)040601][J]. Chin. Phys. Lett., 2017, 34(10): 100601
[8] Zhao-Min Jia, Xu-Hai Yang, Bao-Qi Sun, Xiao-Ping Zhou, Bo Xiang, Xin-Yu Dou. Direct Digital Frequency Control Based on the Phase Step Change Characteristic between Signals[J]. Chin. Phys. Lett., 2017, 34(9): 100601
[9] Zhao-Yang Tai, Lu-Lu Yan, Yan-Yan Zhang, Xiao-Fei Zhang, Wen-Ge Guo, Shou-Gang Zhang, Hai-Feng Jiang. Transportable 1555-nm Ultra-Stable Laser with Sub-0.185-Hz Linewidth[J]. Chin. Phys. Lett., 2017, 34(9): 100601
[10] Jie Zhang, Ke Deng, Jun Luo, Ze-Huang Lu. Direct Laser Cooling Al$^+$ Ion Optical Clocks[J]. Chin. Phys. Lett., 2017, 34(5): 100601
[11] Hui Liu, Xi Zhang, Kun-Liang Jiang, Jin-Qi Wang, Qiang Zhu, Zhuan-Xian Xiong, Ling-Xiang He, Bao-Long Lyu. Realization of Closed-Loop Operation of Optical Lattice Clock Based on $^{171}$Yb[J]. Chin. Phys. Lett., 2017, 34(2): 100601
[12] Xue Deng, Jie Liu, Dong-Dong Jiao, Jing Gao, Qi Zang, Guan-Jun Xu, Rui-Fang Dong, Tao Liu, Shou-Gang Zhang. Coherent Transfer of Optical Frequency over 112km with Instability at the 10$^{-20}$ Level[J]. Chin. Phys. Lett., 2016, 33(11): 100601
[13] Meng-Jiao Zhang, Hui Liu, Xi Zhang, Kun-Liang Jiang, Zhuan-Xian Xiong, Bao-Long LÜ, Ling-Xiang He. Hertz-Level Clock Spectroscopy of $^{171}$Yb Atoms in a One-Dimensional Optical Lattice[J]. Chin. Phys. Lett., 2016, 33(07): 100601
[14] Kang-Kang Liu, Ru-Chen Zhao, Wei Gou, Xiao-Hu Fu, Hong-Li Liu, Shi-Qi Yin, Jian-Fang Sun, Zhen Xu, Yu-Zhu Wang. A Single Folded Beam Magneto-Optical Trap System for Neutral Mercury Atoms[J]. Chin. Phys. Lett., 2016, 33(07): 100601
[15] Yu-Xin Zhuang, Dai-Ting Shi, Da-Wei Li, Yi-Gen Wang, Xiao-Na Zhao, Jian-Ye Zhao, Zhong Wang. An Accurate Frequency Control Method and Atomic Clock Based on Coherent Population Beating Phenomenon[J]. Chin. Phys. Lett., 2016, 33(04): 100601
Viewed
Full text


Abstract