Chin. Phys. Lett.  2012, Vol. 29 Issue (1): 014702    DOI: 10.1088/0256-307X/29/1/014702
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Numerical Simulation of Cavitation in a Centrifugal Pump at Low Flow Rate
TAN Lei1, CAO Shu-Liang2**, WANG Yu-Ming1, ZHU Bao-Shan2
1State Key Laboratory of Tribology, Tsinghua University, Beijing 100084
2State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084
Cite this article:   
TAN Lei, CAO Shu-Liang, WANG Yu-Ming et al  2012 Chin. Phys. Lett. 29 014702
Download: PDF(1278KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Based on the full cavitation model which adopts homogeneous flow supposition and considering the compressibility effect on cavitation flow to modify the re-normalization group kϵ turbulence model by the density function, a computational model is developed to simulate cavitation flow of a centrifugal pump at low flow rate. The Navier–Stokes equation is solved with the SIMPLEC algorithm. The calculated curves of net positive suction head available (NPSHa) HNPSHa agree well with the experimental data. The critical point of cavitation in centrifugal pump can be predicted precisely, and the NPSH critical values derived from simulation are consistent with the experimental data. Thus the veracity and reliability of this computational model are verified. Based on the result of numerical simulation, the distribution of vapor volume fraction in the impeller and pressure at the impeller inlet are analyzed. Cavities first appear on the suction side of the blade head near the front shroud. A large number of cavities block the impeller channels, which leads to the sudden drop of head at the cavitation critical point. With the reduction of NPSHa, the distribution of pressure at the impeller inlet is more uniform.
Keywords: 47.55.Ca      64.70.Fm     
Received: 06 July 2011      Published: 07 February 2012
PACS:  47.55.Ca (Gas/liquid flows)  
  64.70.fm (Thermodynamics studies of evaporation and condensation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/1/014702       OR      https://cpl.iphy.ac.cn/Y2012/V29/I1/014702
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
TAN Lei
CAO Shu-Liang
WANG Yu-Ming
ZHU Bao-Shan
[1] Wang G Y, Senocak I, Shyy W, Ikohagi T and Cao S L 2001 Prog. Aerospace Sci. 37 551
[2] Coutier Delgosha O, Stutz B, Vabre A and Legoupil S 2007 J. Fluid. Mech. 578 171
[3] Zhou L J and Wang Z W 2008 J. Fluids. Engin. 130 011302
[4] Leroux J, Astolfi J and Billard Y 2004 J. Fluids Engin. 126 94
[5] Zhang Y, Luo X W, Ji B, Liu S H, Wu Y L and Xu H Y 2010 Chin. Phys. Lett. 27 016401
[6] Barre S, Rolland J, Boitel G, Goncalves G and Fortes P R 2008 J. Euromechfluid. 28 2321
[7] Pouffary B, Patella R F and Reboud J L 2008 J. Fluids Engin. 130 061301
[8] Ding H, Visser F C, Jiang Y and Furmanczyk M 2011 J. Fluids Engin. 133 011101
[9] Singhal A K, Athavale M M, Li H Y and Jiang Y 2002 J. Fluids Engin. 124 617
[10] Coutier Delgosha O, Fortes P R and Reboud J L 2003 J. Fluids Engin. 125 38
Related articles from Frontiers Journals
[1] Hagar Alm El-Din, ZHANG Yu-Sheng, Medhat Elkelawy. A Computational Study of Cavitation Model Validity Using a New Quantitative Criterion[J]. Chin. Phys. Lett., 2012, 29(6): 014702
[2] LUO Xian-Wu**, JI Bin, ZHANG Yao, XU Hong-Yuan. Cavitating Flow over a Mini Hydrofoil[J]. Chin. Phys. Lett., 2012, 29(1): 014702
[3] HUANG Biao, WANG Guo-Yu** . Evaluation of a Filter-Based Model for Computations of Cavitating Flows[J]. Chin. Phys. Lett., 2011, 28(2): 014702
[4] JI Bin, LUO Xian-Wu, ZHANG Yao, RAN Hong-Juan, XU Hong-Yuan, WU Yu-Lin. A Three-Component Model Suitable for Natural and Ventilated Cavitation[J]. Chin. Phys. Lett., 2010, 27(9): 014702
[5] ZHANG Yao, LUO Xian-Wu, JI Bin, LIU Shu-Hong, WU Yu-Lin, XU Hong-Yuan. A Thermodynamic Cavitation Model for Cavitating Flow Simulation in a Wide Range of Water Temperatures[J]. Chin. Phys. Lett., 2010, 27(1): 014702
[6] LI Zhang-Guo, LIU Qiu-Sheng, LIU Rong, HU Wei, DENG Xin-Yu. Influence of Rayleigh-Taylor Instability on Liquid Propellant Reorientation in a Low-Gravity Environment[J]. Chin. Phys. Lett., 2009, 26(11): 014702
Viewed
Full text


Abstract