Chin. Phys. Lett.  2012, Vol. 29 Issue (1): 014701    DOI: 10.1088/0256-307X/29/1/014701
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Exact Solutions of Chemically Reactive Solute Distribution in MHD Boundary Layer Flow over a Shrinking Surface
Chandaneswar Midya*
Department of Mathematics, Ghatal Rabindra Satabarsiki Mahavidyalaya, Ghatal-721212, West Bengal, India
Cite this article:   
Chandaneswar Midya 2012 Chin. Phys. Lett. 29 014701
Download: PDF(453KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An analytical study of the distribution of a reactant solute undergoing a first-order chemical reaction in the boundary layer flow of an electrically conducting incompressible fluid over a linearly shrinking surface is presented. The flow is permeated by an externally applied magnetic field normal to the plane of the flow. The equations governing the flow and concentration field are reduced into a set of nonlinear ordinary differential equations using similarity variables. Closed form exact solutions of the reduced concentration equation are obtained for both prescribed power-law surface concentration (PSC) and power-law wall mass flux (PMF) as boundary conditions. The study reveals that the concentration over a shrinking sheet is significantly different from that of a stretching surface. It is found that the solute boundary layer thickness is enhanced with the increasing values of the Schmidt number and the power-law index parameter, but decreases with enhanced values of magnetic and reaction rate parameters for the PSC case. For the PMF case, the solute boundary layer thickness decreases with the increase of the Schmidt number, magnetic and reaction rate parameter for power-law index parameter n=0. Negative solute boundary layer thickness is observed for the PMF case when n=1 and 2, and these facts may not be realized in real-world applications.
Keywords: 47.15.Cb      47.65.-d      47.70.Fw     
Received: 09 October 2011      Published: 07 February 2012
PACS:  47.15.Cb (Laminar boundary layers)  
  47.65.-d (Magnetohydrodynamics and electrohydrodynamics)  
  47.70.Fw (Chemically reactive flows)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/1/014701       OR      https://cpl.iphy.ac.cn/Y2012/V29/I1/014701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chandaneswar Midya
[1] Wei J and Prater C D 1963 AIChE 9 77
[2] Das U N, Deka R and Soundalgekar V M 1994 Forsch. Ingenieurwes 60 284
[3] Andersson H I, Hansen O R and Holmedal B 1994 Int. J. Heat Mass Transfer 37 659
[4] Fan J R, Shi J M and Xu X Z 1998 Acta Mech. 126 59
[5] Anjalidavi S P and Kandasamy R 1999 Heat Mass Transfer 35 465
[6] Anjalidavi S P and Kandasamy R 2000 Z. Angew. Math. Mech. 80 697
[7] Takhar H S, Chamkha A J and Nath G 2000 Int. J. Eng. Sci. 38 1303
[8] Muthucumaraswamy R 2002 Forsch. Ingenieurwes 67 129
[9] Afify A A 2004 Heat Mass Transfer 40 495
[10] Wang C Y 1990 Quart. Appl. Math. 48 601
[11] Miklavcic M and Wang C Y 2006 Quart. Appl. Math. 64 283
[12] Hayat T, Abbas Z and Sajid M 2007 J. Applied Mech. 74 1165
[13] Sajid M and Hayat T 2009 Chaos, Solitons and Fractals 39 1317
[14] Fang T and Zhang J 2009 Commun. Nonlinear Sci. Numer. Simulat. 14 2853
[15] Noor N F M, Kechil S A and Hashim I 2010 Commun. Nonlinear Sci. Numer. Simulat. 15 144
[16] Hayat T, Abbas Z and Ali N 2008 Phys. Lett. A 372 4698
[17] Muhaimin, Kandasamy R and Hashim I 2010 Nucl. Engin. Design 240 933
[18] Midya C, Layek G C, Gupta A S and Mahapatra T R 2003 Trans. ASME J. Fluids Engin. 125 952
[19] Abramowitz M, Stegun I A 1972 Handbook of Mathematical Functions (New York: Dover Publications)
Related articles from Frontiers Journals
[1] Swati Mukhopadhyay*. Heat Transfer Analysis of the Unsteady Flow of a Maxwell Fluid over a Stretching Surface in the Presence of a Heat Source/Sink[J]. Chin. Phys. Lett., 2012, 29(5): 014701
[2] M. Sajid, K. Mahmood, Z. Abbas. Axisymmetric Stagnation-Point Flow with a General Slip Boundary Condition over a Lubricated Surface[J]. Chin. Phys. Lett., 2012, 29(2): 014701
[3] Krishnendu Bhattacharyya**, Swati Mukhopadhyay, G. C. Layek . Slip Effects on an Unsteady Boundary Layer Stagnation-Point Flow and Heat Transfer towards a Stretching Sheet[J]. Chin. Phys. Lett., 2011, 28(9): 014701
[4] LIU Shi-Jie**, LIN Zhi-Yong, SUN Ming-Bo, LIU Wei-Dong . Thrust Vectoring of a Continuous Rotating Detonation Engine by Changing the Local Injection Pressure[J]. Chin. Phys. Lett., 2011, 28(9): 014701
[5] GAO An-Ran, LIU Xiang, GAO Xiu-Li, LI Tie**, GAO Hua-Min, ZHOU Ping, WANG Yue-Lin . A Low Voltage Driven Digital-Droplet-Transporting-Chip by Electrostatic Force[J]. Chin. Phys. Lett., 2011, 28(8): 014701
[6] Krishnendu Bhattacharyya** . Dual Solutions in Unsteady Stagnation-Point Flow over a Shrinking Sheet[J]. Chin. Phys. Lett., 2011, 28(8): 014701
[7] Krishnendu Bhattacharyya**, G. C. Layek . MHD Boundary Layer Flow of Dilatant Fluid in a Divergent Channel with Suction or Blowing[J]. Chin. Phys. Lett., 2011, 28(8): 014701
[8] Krishnendu Bhattacharyya . Boundary Layer Flow and Heat Transfer over an Exponentially Shrinking Sheet[J]. Chin. Phys. Lett., 2011, 28(7): 014701
[9] T. Hayat, M. Mustafa**, S. Obaidat . Simultaneous Effects of MHD and Thermal Radiation on the Mixed Convection Stagnation-Point Flow of a Power-Law Fluid[J]. Chin. Phys. Lett., 2011, 28(7): 014701
[10] TANG Zhan-Qi, JIANG Nan, ** . TR PIV Experimental Investigation on Bypass Transition Induced by a Cylinder Wake[J]. Chin. Phys. Lett., 2011, 28(5): 014701
[11] SI Xin-Hui**, ZHENG Lian-Cun, ZHANG Xin-Xin, SI Xin-Yi, YANG Jian-Hong . Flow of a Viscoelastic Fluid through a Porous Channel with Expanding or Contracting Walls[J]. Chin. Phys. Lett., 2011, 28(4): 014701
[12] Krishnendu Bhattacharyya**, Swati Mukhopadhyay, G. C. Layek . MHD Boundary Layer Slip Flow and Heat Transfer over a Flat Plate[J]. Chin. Phys. Lett., 2011, 28(2): 014701
[13] ZHANG Hui, FAN Bao-Chun**, CHEN Zhi-Hua . In-depth Study on Cylinder Wake Controlled by Lorentz Force[J]. Chin. Phys. Lett., 2011, 28(12): 014701
[14] Swati Mukhopadhyay . Heat Transfer in a Moving Fluid over a Moving Non-Isothermal Flat Surface[J]. Chin. Phys. Lett., 2011, 28(12): 014701
[15] FANG Tie-Gang*, ZHANG Ji, ZHONG Yong-Fang, TAO Hua . Unsteady Viscous Flow over an Expanding Stretching Cylinder[J]. Chin. Phys. Lett., 2011, 28(12): 014701
Viewed
Full text


Abstract