Chin. Phys. Lett.  2012, Vol. 29 Issue (1): 014210    DOI: 10.1088/0256-307X/29/1/014210
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Polarization Beam Splitter Based on a Self-Collimation Michelson Interferometer in a Silicon Photonic Crystal
CHEN Xi-Yao1**, LIN Gui-Min1, LI Jun-Jun2, XU Xiao-Fu2, JIANG Jun-Zhen2, QIANG Ze-Xuan2, QIU Yi-Shen2, LI Hui2
1Department of Physics and Electronic Information Engineering, Minjiang University, Fuzhou 350108
2School of Physics and Optoelectronics Technology, Fujian Normal University, Fuzhou 350007
Cite this article:   
CHEN Xi-Yao, LIN Gui-Min, LI Jun-Jun et al  2012 Chin. Phys. Lett. 29 014210
Download: PDF(2888KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A polarization beam splitter based on a self-collimation Michelson interferometer (SMI) in a hole-type silicon photonic crystal is proposed and numerically demonstrated. Utilizing the polarization dependence of the transmission spectra of the SMI and polarization peak matching method, the SMI can work as a polarization beam splitter (PBS) by selecting an appropriate path length difference in the structure. Based on its novel polarization beam splitting mechanics, the polarization extinction ratios (PERs) for TM and TE modes are as high as 18.4 dB and 24.3 dB, respectively. Since its dimensions are only several operating wavelengths, the PBS may have practical applications in photonic integrated circuits.
Keywords: 42.70.Qs      42.79.Fm      42.82.Gw     
Received: 01 August 2011      Published: 07 February 2012
PACS:  42.70.Qs (Photonic bandgap materials)  
  42.79.Fm (Reflectors, beam splitters, and deflectors)  
  42.82.Gw (Other integrated-optical elements and systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/1/014210       OR      https://cpl.iphy.ac.cn/Y2012/V29/I1/014210
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Xi-Yao
LIN Gui-Min
LI Jun-Jun
XU Xiao-Fu
JIANG Jun-Zhen
QIANG Ze-Xuan
QIU Yi-Shen
LI Hui
[1] Kosaka H, Kawashima T, Tomita A, Notomi M, Tamamura T, Sato T and Kawakami S 1999 Appl. Phys. Lett. 74 1212
[2] Witzens J, Lončr M and Scherer A 2002 IEEE J. Sel. Top. Quantum Electron. 8 1246
[3] Wu L, Mazilu M and Krauss T F 2003 J. Lightwave Technol. 21 561
[4] Yu X and Fan S 2003 Appl. Phys. Lett. 83 3251
[5] Pakich P T, Dahlem M S, Tandon S, Ibanescu M, Soljacic M, Petrich G S, Johnnopolos J D, Kolodziejski L A and Ippen E P 2006 Nature Mater. 5 93
[6] Prather D W, Shi S, Murakowski J, Schneider G J, Sharkawy A, Chen C, Miao B and Martin R 2007 J. Phys. D 40 2635
[7] Chen X, Qiu Y, Wang Y, Lin N, Lin G, Hong H and Ni B 2007 Proc. SPIE 6834 68343I
[8] Zhao D, Zhou C, Gong Q and Jiang X 2008 J. Phys. D 41 15108
[9] Zhao D, Zhang J, Yao P, Jiang X and Chen X 2007 Appl. Phys. Lett. 90 231114
[10] Zhang J, Zhao D Y, Zhou C H and Jiang X Y 2007 Chin. Phys. Lett. 24 1961
[11] Zabelin V, Dunbar L A, Thomas N L and Houdré R 2007 Opt. Lett. 32 530
[12] Shen X, Han K, Yuan F, Li H, Wang Z and Zhong Q 2008 Chin. Phys. Lett. 25 4288
[13] Kim T, Lee S, Park H, Kim J and Kee C 2010 Opt. Express 18 5384
[14] Nguyen H M, Dundar M A, Heijden R W, Drift E W J M, Salemink H W M, Rogge S and Caro J 2010 Opt. Express 18 6437
[15] Hou J, Gao D, Wua H and Zhou Z 2009 Opt. Commun. 282 3172
[16] Chen X, Qiang Z, Zhao D, Li H, Qiu Y, Yang W and Zhou W 2009 Opt. Express 17 19808
[17] Chen X, Zhao D, Qiang Z, Lin G, Li H, Qiu Y and Zhou W 2010 Appl. Opt. 49 5878
[18] Liu T, Zakharian A R, Fallahi M, Moloney J V and Mansuripur M 2005 IEEE Photon. Techol. Lett. 17 1435
[19] Pottier P, Mastroiacovo S and De La Rue R M 2006 Opt. Express 14 5617
[20] Schonbrun E, Wu Q, Park W, Yamashita T and Summers C J 2006 Opt. Lett. 31 3104
[21] Zheng W, Xing M, Ren G, Johnson S G, Zhou W, Chen W and Chen L 2009 Opt. Express 17 8657
[22] P Yeh 1979 J. Opt. Soc. Am. 69 742
[23] Saleh B E A and Teich M C 1991 Fundamentals of Photonics (New York: Wiley Interscience Publication)
Related articles from Frontiers Journals
[1] ZHOU Hai-Chun, YANG Guang, WANG Kai, LONG Hua, LU Pei-Xiang. Coupled Optical Tamm States in a Planar Dielectric Mirror Structure Containing a Thin Metal Film[J]. Chin. Phys. Lett., 2012, 29(6): 014210
[2] ZHOU Yan, YIN Li-Qun. Self-Detection of Leaking Pipes by One-Dimensional Photonic Crystals[J]. Chin. Phys. Lett., 2012, 29(6): 014210
[3] ZHU Yun-Jin, HUANG Xu-Guang, MEI Xian. A Surface Plasmon Polariton Electro-Optic Switch Based on a Metal-Insulator-Metal Structure with a Strip Waveguide and Two Side-Coupled Cavities[J]. Chin. Phys. Lett., 2012, 29(6): 014210
[4] ZHANG Li-Wei, ZHANG Ye-Wen, HE Li, WANG You-Zhen. Experimental Study of Tunneling modes in Photonic Crystal Heterostructure Consisting of Single-Negative Materials[J]. Chin. Phys. Lett., 2012, 29(6): 014210
[5] HAN Ying,**,HOU Lan-Tian,ZHOU Gui-Yao,YUAN Jin-Hui,XIA Chang-Ming,WANG Wei,WANG Chao,HOU Zhi-Yun,. Flat Supercontinuum Generation within the Telecommunication Wave Bands in a Photonic Crystal Fiber with Central Holes[J]. Chin. Phys. Lett., 2012, 29(5): 014210
[6] LI Heng,SHENG Chuan-Xiang**,CHEN Qian. Optical Bistability in Ag/Dielectric Multilayers[J]. Chin. Phys. Lett., 2012, 29(5): 014210
[7] M. Afshari Bavil,SUN Xiu-Dong*,HUANG Feng. Frequency Selective Propagation by Employing Fabry–Perot Nanocavities in a Subwavelength Double-slit Structure[J]. Chin. Phys. Lett., 2012, 29(4): 014210
[8] LI Cheng-Guo, GAO Yong-Hao, XU Xing-Sheng. Angular Tolerance Enhancement in Guided-Mode Resonance Filters with a Photonic Crystal Slab[J]. Chin. Phys. Lett., 2012, 29(3): 014210
[9] WU Hong, JIANG Li-Yong, JIA Wei, LI Xiang-Yin. Polarization Beam Splitter Based on an Annular Photonic Crystal of Negative Refraction[J]. Chin. Phys. Lett., 2012, 29(3): 014210
[10] HAN Ying, **, HOU Lan-Tian, YUAN Jin-Hui, XIA Chang-Ming, ZHOU Gui-Yao,. Ultraviolet Continuum Generation in the Fundamental Mode of Photonic Crystal Fibers[J]. Chin. Phys. Lett., 2012, 29(1): 014210
[11] ZHANG Xuan, CHEN Shu-Wen, LIAO Qing-Hua**, YU Tian-Bao, LIU Nian-Hua, HUANG Yong-Zhen . Design of a Novel Polarized Beam Splitter Based on a Two-Dimensional Photonic Crystal Resonator Cavity[J]. Chin. Phys. Lett., 2011, 28(8): 014210
[12] ZHU Jia-Hu, HUANG Xu-Guang**, MEI Xian . Double-Teeth-Shaped Plasmonic Waveguide Electro-Optical Switches[J]. Chin. Phys. Lett., 2011, 28(8): 014210
[13] ZHU Jia-Hu, HUANG Xu-Guang**, MEI Xian . High-Resolution Plasmonic Refractive-Index Sensor Based on a Metal-Insulator-Metal Structure[J]. Chin. Phys. Lett., 2011, 28(5): 014210
[14] FANG Yi-Jiao, CHEN Zhuo**, WANG Zhen-Lin . Slow-Light Propagation in a Tapered Dielectric Periodic Waveguide over Broad Frequency Range[J]. Chin. Phys. Lett., 2011, 28(5): 014210
[15] LIU Hong-Wei**, KAN Qiang, WANG Chun-Xia, HU Hai-Yang, XU Xing-Sheng, CHEN Hong-Da . Light Extraction Enhancement of GaN LED with a Two-Dimensional Photonic Crystal Slab[J]. Chin. Phys. Lett., 2011, 28(5): 014210
Viewed
Full text


Abstract