ATOMIC AND MOLECULAR PHYSICS |
|
|
|
|
Measurement of the Absolute Photoionization Cross Section for the 5P3/2 State of 87Rb in a Vapor Cell Magneto-optic Trap |
HUANG Wei1, RUAN Ya-Ping2, JIA Feng-Dong2, ZHONG Yin-Peng2, LIU Long-Wei2, DAI Xing-Can1, XUE Ping1, XU Xiang-Yuan1,3, ZHONG Zhi-Ping2** |
1State Key Laboratory for Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084
2College of Physical Sciences, Graduate University of the Chinese Academy of Sciences, PO Box 4588, Beijing 100049
3Department of Physics, Capital Normal University, Beijing 100037 |
|
Cite this article: |
HUANG Wei, RUAN Ya-Ping, JIA Feng-Dong et al 2012 Chin. Phys. Lett. 29 013201 |
|
|
Abstract We report the measurement of the absolute photoionization cross section for the 5P3/2 state of 87Rb at wavelength of 473 nm, which results in the photoelectron energies of 33 meV above the ionization threshold, using cold atoms confined in a vapor−loaded magneto-optical trap. The 87Rb 5P3/2 photoionization cross section at 473 nm is determined to be σPI=10.5±2.2 Mb. Considering the spatial distribution of the trapped atoms, the average intensity IPI of the ionization laser seen by an atom in the MOT instead of ionizing laser intensity IPI is used in our calculations for the photoionization cross sections. The excited state fraction is also accurately estimated using the latest experimental result.
|
Keywords:
32.80.Fb
34.50.Rk
32.80.-t
|
|
Received: 15 September 2011
Published: 07 February 2012
|
|
PACS: |
32.80.Fb
|
(Photoionization of atoms and ions)
|
|
34.50.Rk
|
(Laser-modified scattering and reactions)
|
|
32.80.-t
|
(Photoionization and excitation)
|
|
|
|
|
[1] Kneff D W and Farrar H 1979 J. Nucl. Mater. 85 479 [2] Sawan M E et al 2002 Fusion Eng. Des. 61 561 [3] Gilliam S B et al 2005 J. Nucl. Mater. 347 289 [4] Vogelsang W F and Khater H Y 1987 Fusion Eng. Des. 5 367 [5] Nagata S and Takahiro K 2001 J. Nucl. Mater. 290 135 [6] Besenbacher F et al 1982 J. Appl. Phys. 53 3547 [7] Lee S R et al 1989 J. Appl. Phys. 66 1137 [8] Beavis L C and Kass W J 1977 J. Vac. Scl. Technol. 14 509 [9] Kass W J 1977 J. Vac. Technol. 16 518 [10] Seletskaia T et al 2005 Phys. Rev. L 94 046403 [11] Seletskaia T et al 2008 Phys. Rev. B 78 134103 [12] Zeng X L et al 2009 Nucl. Instrum. Methods B 267 3037 [13] Yang L et al 2008 Physica B 403 2719 [14] Thomas G J 1983 Radiat. Eff. 78 37 [15] Wu Y X et al 2010 J. Anhui University of Technology 27 57 [16] Segall M D et al 2002 J. Phys. Condens. Matter 14 2717 [17] Robinson P and Das S 2004 J. Eng. Fract. Mech. 71 345 [18] Vanderbilt D 1990 Phys. Rev. B 41 7892 [19] Perdew J P et al 1992 Phys. Rev. B 46 6671 [20] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 [21] Song Y et al 2002 Philos. Mag. A 82 1345 [22] Wang Y L et al 2010 J. Nucl. Mater. 402 55 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|