NUCLEAR PHYSICS |
|
|
|
|
Second-Order Contribution of the Incompressibility in Asymmetric Nuclear Matter |
LI Zeng-Hua1,2**, ZHANG Da-Peng3, SCHULZE Hans-Josef 4, ZUO Wei5 |
1Institute of Modern Physics, Department of Nuclear Science and Technology, Fudan University, Shanghai 200433
2Key Laboratory of Applied Ion Beam Physics (Ministry of Education), Fudan University, Shanghai 200433
3Department of Physics, Fudan University, Shanghai 200433
4INFN Sezione di Catania, Via Santa Sofia 64, I-95123 Catania, Italy
5Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 |
|
Cite this article: |
LI Zeng-Hua, ZHANG Da-Peng, SCHULZE Hans-Josef et al 2012 Chin. Phys. Lett. 29 012101 |
|
|
Abstract With the complementarity of the nucleonic three-body force, we present the saturation points of symmetric nuclear matter with different interactions adopted within the Brueckner–Hartree–Fock scheme, and a more accurate empirical parameterization function for the equation of state of symmetric nuclear matter and pure neutron matter. On the basis of this fit formula, the symmetry energy and its derivatives are investigated, and ultimately the higher-order coefficient of the isobaric incompressibility for isospin asymmetric nuclear matter is predicted.
|
Keywords:
21.65.Mn
21.45.Ff
21.30.Fe
21.65.Ef
|
|
Received: 13 September 2011
Published: 07 February 2012
|
|
PACS: |
21.65.Mn
|
(Equations of state of nuclear matter)
|
|
21.45.Ff
|
(Three-nucleon forces)
|
|
21.30.Fe
|
(Forces in hadronic systems and effective interactions)
|
|
21.65.Ef
|
(Symmetry energy)
|
|
|
|
|
[1] Baldo M, Bombaci I and Burgio G F 1997 Astron. Astrophys. 328 274 [2] Lejeune A, Lombardo U and Zuo W 2000 Phys. Lett. B 477 45 [3] Zuo W, Lejeune A, Lombardo U and Mathiot J F 2002 Nucl. Phys. A 706 418 [4] Brockmann R and Machleidt R 1990 Phys. Rev. C 42 1965 [5] Alonso D and Sammarruca F 2003 Phys. Rev. C 67 054301 [6] Carlson J, Pandharipande V R and Wiringa R B 1983 Nucl. Phys. A 401 59 [7] Akmal A, Pandharipande V R and Ravenhall D G 1998 Phys. Rev. C 58 1804 [8] Ren Z Z, Tai F and Chen D H 2002 Phys. Rev. C 66 064306 [9] Meng J, Toki H, Zhou S G et al 2006 Prog. Part. Nucl. Phys. 57 470 [10] Chen L W, Ko C M and Li B A 2005 Phys. Rev. C 72 064309 [11] Di Toro M, Baran V, Colonna M et al 1999 Prog. Part. Nucl. Phys. 42 125 [12] Li B A, Chen L W and Ko C M 2008 Phys. Rep. 464 113 [13] Grangé P, Lejeune A, Martzolff M and Mathiot J F 1989 Phys. Rev. C 40 1040 [14] Li Z H, Lombardo U, Schulze H J and Zuo W 2008 Phys. Rev. C 77 034316 [15] Li Z H and Schulze H J 2008 Phys. Rev. C 78 028801 [16] Coon S A, Scadron M D, McNamee P C et al 1979 Nucl. Phys. A 317 242 [17] Baldo M and Ferreira L S 1999 Phys. Rev. C 59 682 [18] Jeukenne J P, Lejeune A and Mahaux C 1976 Phys. Rep. 25 83 [19] Song H Q, Baldo M, Giansiracusa G and Lombardo U 1998 Phys. Rev. Lett. 81 1584 [20] Sartor R 2006 Phys. Rev. C 73 034307 [21] Chen L W, Cai B J, Ko C M et al 2009 Phys. Rev. C 80 014322 [22] Prakash M and Bedell K S 1985 Phys. Rev. C 32 1118 [23] Wiringa B R, Stoks V G J and Schiavilla R 1995 Phys. Rev. C 51 38 [24] Machleidt R, Holinde K and Elster C 1987 Phys. Rep. 149 1 [25] Machleidt R 1989 Adv. Nucl. Phys. 19 189 [26] Stoks V G J, Klomp R A M, Terheggen C P F and de Swart J J 1994 Phys. Rev. C 49 2950 [27] Li B A and Steiner A W 2006 Phys. Lett. B 642 436 [28] Li T et al 2007 Phys. Rev. Lett. 99 162503 [29] Garg U et al 2007 Nucl. Phys. A 788 36 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|