Chin. Phys. Lett.  2012, Vol. 29 Issue (1): 010402    DOI: 10.1088/0256-307X/29/1/010402
GENERAL |
Propagation and Evolution of a Scalar Field in Einstein–Power–Maxwell Spacetime
LIU Yan, JING Ji-Liang**
Department of Physics, and Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University, Changsha 410081
Cite this article:   
LIU Yan, JING Ji-Liang 2012 Chin. Phys. Lett. 29 010402
Download: PDF(493KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The propagation and dynamical evolution of a scalar field in the background of a (2+1)-dimensional Einstein–Power–Maxwell (EPM) black hole are studied. We obtain an analytical expression for the greybody factor, which shows that the greybody factor increases as the electric charge increases and approaches unity for large frequencies. We also find the quasinormal modes of the black hole, which tell us that the EPM spacetime is very stable.
Keywords: 04.70.Bw      04.70.-s      97.60.Lf     
Received: 20 September 2011      Published: 07 February 2012
PACS:  04.70.Bw (Classical black holes)  
  04.70.-s (Physics of black holes)  
  97.60.Lf (Black holes)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/1/010402       OR      https://cpl.iphy.ac.cn/Y2012/V29/I1/010402
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Yan
JING Ji-Liang
[1]  Ayón Beato E and García A 1998 Phys. Rev. Lett. 80 5056 
[2]  Ayón Beato E and García A 1999 Phys. Lett. B 464 25 
[3]  Maeda H, Hassaine M and Martinez C 2009 Phys. Rev. D 79 044012 
[4]  Hassaine M and Martinez C 2007 Phys. Rev. D 75 027502 
[5]  Rasheed D A 1997 arXiv:9702087[hep-th] 
[6]  Cataldo M and Garcia A 2000 Phys. Rev. D 61 084003 
[7]  Hassaine M and Martinez C 2008 Class. Quantum Grav. 25 195023 
[8]  Hendi S H and Panah B E 2010 Phys. Lett. B 684 77 
[9]  Hendi S H and Rastegar Sedehi H R 2009 Gen. Rel. Grav. 41 1355 
[10]  Gurtug O, Mazharimousavi S H and Halilsoy M 2010 arXiv:1010.2340v2[hep-th] 
[11]  Harmark T, Natário J and Schiappa R 2007 arXiv:0708.0017v2[hep-th] 
[12]  Chandrasekhar S and Detweiler S 1975 Proc. R. Soc. Lond. A 344 441 
[13]  Andersson N and Onozawa H 1996 Phys. Rev. D 54 7470 
[14]  Abramowitz M and Stegun I A 1970 Handbook of Mathematical Functions (New York: Dover) chap 9 p 360 
[15]  Rocha J V 2009 J. High Energy Phys. 08 027 
[16]  Ding C K, Chen S B and Jing J L 2010 Phys. Rev. D 82 024031 
[17]  Harris C M and Kanti P 2006 Phys. Lett. B 633 106 
[18]  Creek S, Efthimiou O, Kanti P and Tamvakis K 2007 Phys. Rev. D 75 084043 
[19]  Chen S B, Wang B and Su R K 2008 Phys. Rev. D 77 024039 
[20]  Creek S, Efthimiou O, Kanti P and Tamvakis K 2007 Phys. Rev. D 76 104013 
[21]  Duffy G, Harris C, Kanti P and Winstanley E 2005 J. High Energy Phys. 0509 049 
Related articles from Frontiers Journals
[1] Gamal G. L. Nashed*. Spherically Symmetric Solutions on a Non-Trivial Frame in f(T) Theories of Gravity[J]. Chin. Phys. Lett., 2012, 29(5): 010402
[2] ZHANG Bao-Cheng, CAI Qing-Yu, ZHAN Ming-Sheng. Entropy Conservation in the Transition of Schwarzschild-de Sitter Space to de Sitter Space through Tunneling[J]. Chin. Phys. Lett., 2012, 29(2): 010402
[3] M. Sharif**, G. Abbas. Phantom Energy Accretion by a Stringy Charged Black Hole[J]. Chin. Phys. Lett., 2012, 29(1): 010402
[4] M Sharif**, G Abbas . Phantom Accretion onto the Schwarzschild de-Sitter Black Hole[J]. Chin. Phys. Lett., 2011, 28(9): 010402
[5] Faiz-ur-Rahman, Salahuddin, M. Akbar** . Generalized Second Law of Thermodynamics in Wormhole Geometry with Logarithmic Correction[J]. Chin. Phys. Lett., 2011, 28(7): 010402
[6] HE Liang, HUANG Chang-Yin, WANG Ding-Xiong** . A Constraint of Black Hole Mass and the Inner Edge Radius of Relativistic Accretion Disc[J]. Chin. Phys. Lett., 2011, 28(3): 010402
[7] CAO Guang-Tao**, WANG Yong-Jiu . Interference Phase of Mass Neutrino in Schwarzschild de Sitter Field[J]. Chin. Phys. Lett., 2011, 28(2): 010402
[8] LIU Tong**, XUE Li . Gravitational Instability in Neutrino Dominated Accretion Disks[J]. Chin. Phys. Lett., 2011, 28(12): 010402
[9] GUO Guang-Hai**, DING Xia . Area Spectra of Schwarzschild-Anti de Sitter Black Holes from Highly Real Quasinormal Modes[J]. Chin. Phys. Lett., 2011, 28(10): 010402
[10] HE Xiao-Gang, , MA Bo-Qiang,. Black Holes and Photons with Entropic Force[J]. Chin. Phys. Lett., 2010, 27(7): 010402
[11] PAN Qi-Yuan, JING Ji-Liang. Late-Time Evolution of the Phantom Scalar Perturbation in the Background of a Spherically Symmetric Static Black Hole[J]. Chin. Phys. Lett., 2010, 27(6): 010402
[12] ZHAO Fan, HE Feng. Statistical Mechanical Entropy of a (4+n)-Dimensional Static Spherically Symmetric Black Hole[J]. Chin. Phys. Lett., 2010, 27(2): 010402
[13] WEI Ying-Chun, A. Taani**, PAN Yuan-Yue, WANG Jing, CAI Yan, LIU Gao-Chao, LUO A-Li, ZHANG Hong-Bo, ZHAO Yong-Heng . Neutron Star Motion in the Disk Galaxy[J]. Chin. Phys. Lett., 2010, 27(11): 010402
[14] M. Akbar, Asghar Qadir. Gauss-Bonnet and Lovelock Gravities and the Generalized Second Law of Thermodynamics[J]. Chin. Phys. Lett., 2009, 26(6): 010402
[15] JIAO Cheng-Liang, LU Ju-Fu. Slim Discs with Varying Accretion Rates[J]. Chin. Phys. Lett., 2009, 26(4): 010402
Viewed
Full text


Abstract