Chin. Phys. Lett.  2012, Vol. 29 Issue (1): 010201    DOI: 10.1088/0256-307X/29/1/010201
GENERAL |
Symmetry and Period-Adding Windows in a Modified Optical Injection Semiconductor Laser Model
LI Xian-Feng1**, Andrew Y. -T. Leung2, CHU Yan-Dong1
1Department of Mathematics, Lanzhou Jiaotong University, Lanzhou 730070
2Department of Civil and Architectural Engineering, City University of Hong Kong, Hong Kong
Cite this article:   
LI Xian-Feng, Andrew Y. -T. Leung, CHU Yan-Dong 2012 Chin. Phys. Lett. 29 010201
Download: PDF(1954KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Hierarchical structural symmetry of periodic islands embedded in the chaotic region of modified optical injection semiconductor lasers (MOISLs) is expounded upon in phase diagrams. The onset of the bifurcation cascade shows remarkable accumulation horizons. Each cascade follows a specific period-adding route. Self-similarities and infinite spiral nestings shrinking beyond a certain point of the periodic hub are revealed to affirm the existence of self-organized distribution of periodicity and chaos in phase diagrams.
Keywords: 02.30.Hq      05.45.Pq      05.45.Ac     
Received: 10 September 2011      Published: 07 February 2012
PACS:  02.30.Hq (Ordinary differential equations)  
  05.45.Pq (Numerical simulations of chaotic systems)  
  05.45.Ac (Low-dimensional chaos)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/1/010201       OR      https://cpl.iphy.ac.cn/Y2012/V29/I1/010201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Xian-Feng
Andrew Y. -T. Leung
CHU Yan-Dong
[1]  Wieczorek S, Krauskopf B, Simpson T and Lenstra D 2005 Phys. Rep. 416 1 
[2]  Bonatto C and Gallas J A C 2008 Phil. Trans. R. Soc. A 366 505 
[3]  Bonatto C and Gallas J A C 2007 Phys. Rev. E 75 055204 
[4]  Kovanis V et al 2010 Eur. Phys. J. D 58 181 
[5]  Freire J G and Gallas J A C 2010 Phys. Rev. E 82 037202 
[6]  Gallas J A C 2010 Int. J. Bifur. Chaos 20 197 
[7]  Chlouverakis K E and Adams M J 2003 Opt. Commun. 216 405 
[8]  Chlouverakis K E 2005 Int. J. Bifur. Chaos 15 3011 
[9]  Atsushi U 2012 Communication with Chaotic Lasers: Applications of Nonlinear Dynamics and Synchronization (Berlin: Wiley VCH) 
[10]  Chlouverakis K E and Sprott J C 2005 Physica D 200 156 
[11]  Chu Y D, Li X F, Zhang J G and Chang Y X 2007 J. Zhejiang Univ. Sci. A 8 1408 
[12]  Chu Y D, Li X F, Zhang J G and Chang Y X 2009 Chaos Solitons Fractals 41 14 
[13]  An X L, Yu J N, Chu Y D, Zhang J G and Zhang L 2009 Chaos Solitons Fractals 42 865 
[14]  Udwadia F E and Bremen H 2001 Appl. Math. Comput. 121 219 
[15]  Li X F, Leung A C S, Han X P, Liu X J and Chu Y D 2011 Nonlinear Dyn. 63 263 
[16]  Hénon M 1982 Physica D 50 412 
[17]  Sprott J C 2007 Chaos 17 031124-1 
[18]  Sprott J C 2003 Chaos and Time Series Analysis (Oxford: Oxford University) 
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 010201
[2] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 010201
[3] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 010201
[4] JI Ying**, BI Qin-Sheng . SubHopf/Fold-Cycle Bursting in the Hindmarsh–Rose Neuronal Model with Periodic Stimulation[J]. Chin. Phys. Lett., 2011, 28(9): 010201
[5] WANG Xing-Yuan**, QIN Xue, XIE Yi-Xin . Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map[J]. Chin. Phys. Lett., 2011, 28(8): 010201
[6] Department of Physics, Eastern Mediterranean University, G. Magosa, N. Cyprus, Mersin 0, Turkey
. Chaos in Kundt Type-III Spacetimes[J]. Chin. Phys. Lett., 2011, 28(7): 010201
[7] CAO Qing-Jie, **, HAN Ning, TIAN Rui-Lan . A Rotating Pendulum Linked by an Oblique Spring[J]. Chin. Phys. Lett., 2011, 28(6): 010201
[8] YAN Lu, SONG Jun-Feng, QU Chang-Zheng** . Nonlocal Symmetries and Geometric Integrability of Multi-Component Camassa–Holm and Hunter–Saxton Systems[J]. Chin. Phys. Lett., 2011, 28(5): 010201
[9] WANG Xing-Yuan**, REN Xiao-Li . Chaotic Synchronization of Two Electrical Coupled Neurons with Unknown Parameters Based on Adaptive Control[J]. Chin. Phys. Lett., 2011, 28(5): 010201
[10] SHI Si-Hong, YUAN Yong, WANG Hui-Qi, LUO Mao-Kang** . Weak Signal Frequency Detection Method Based on Generalized Duffing Oscillator[J]. Chin. Phys. Lett., 2011, 28(4): 010201
[11] LI Qun-Hong**, CHEN Yu-Ming, QIN Zhi-Ying . Existence of Stick-Slip Periodic Solutions in a Dry Friction Oscillator[J]. Chin. Phys. Lett., 2011, 28(3): 010201
[12] YANG Yang, WANG Cang-Long, DUAN Wen-Shan**, CHEN Jian-Min . Resonance and Rectification in a Two-Dimensional Frenkel–Kontorova Model with Triangular Symmetry[J]. Chin. Phys. Lett., 2011, 28(3): 010201
[13] XIA Li-Li . Poisson Theory and Inverse Problem in a Controllable Mechanical System[J]. Chin. Phys. Lett., 2011, 28(12): 010201
[14] FENG Cun-Fang**, WANG Ying-Hai . Projective Synchronization in Modulated Time-Delayed Chaotic Systems Using an Active Control Approach[J]. Chin. Phys. Lett., 2011, 28(12): 010201
[15] JIANG Guo-Hui, ZHANG Yan-Hui**, BIAN Hong-Tao, XU Xue-You . Fractal Analysis of Transport Properties in a Sinai Billiard[J]. Chin. Phys. Lett., 2011, 28(12): 010201
Viewed
Full text


Abstract