CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Unconventional Bose–Einstein Condensations from Spin-Orbit Coupling |
WU Cong-Jun1**, Ian Mondragon-Shem1, 2, ZHOU Xiang-Fa3
|
1Department of Physics, University of California, San Diego, CA 92093
2Instituto de Física, Universidad de Antioquia, AA 1226, Medellín, Colombia
3Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026
|
|
Cite this article: |
WU Cong-Jun, Ian Mondragon-Shem, ZHOU Xiang-Fa 2011 Chin. Phys. Lett. 28 097102 |
|
|
Abstract According to the "no-node" theorem, the many-body ground state wavefunctions of conventional Bose–Einstein condensations (BEC) are positive-definite, thus time-reversal symmetry cannot be spontaneously broken. We find that multi-component bosons with spin-orbit coupling provide an unconventional type of BECs beyond this paradigm. We focus on a subtle case of isotropic Rashba spin-orbit coupling and the spin-independent interaction. In the limit of the weak confining potential, the condensate wavefunctions are frustrated at the Hartree–Fock level due to the degeneracy of the Rashba ring. Quantum zero-point energy selects the spin-spiral type condensate through the "order-from-disorder" mechanism. In a strong harmonic confining trap, the condensate spontaneously generates a half-quantum vortex combined with the skyrmion type of spin texture. In both cases, time-reversal symmetry is spontaneously broken. These phenomena can be realized in both cold atom systems with artificial spin-orbit couplings generated from atom-laser interactions and exciton condensates in semi-conductor systems.
|
Keywords:
71.35.-y
73.50.-h
03.75.Mn
03.75.Nt
|
|
Received: 03 August 2011
Published: 30 August 2011
|
|
PACS: |
71.35.-y
|
(Excitons and related phenomena)
|
|
73.50.-h
|
(Electronic transport phenomena in thin films)
|
|
03.75.Mn
|
(Multicomponent condensates; spinor condensates)
|
|
03.75.Nt
|
(Other Bose-Einstein condensation phenomena)
|
|
|
|
|
[1] Feynman R P 1972 Statistical Mechanics, A Set of Lectures (Berlin: Addison-Wesley)
[2] Juzeliunas G et al 2008 Phys. Rev. Lett. 100 200405
[3] Vaishnav J Y and Clark C W 2008 Phys. Rev. Lett. 100 153002
[4] Stanescu T D et al 2007 Phys. Rev. Lett. 99 110403
[5] Lin Y J et al 2009 Phys. Rev. Lett. 102 130401
[6] Lin Y J et al 2009 Nature 462 628
[7] Spielman I B 2009 Phys. Rev. A 79 063613
[8] Lin Y J et al 2011 Nature 471 83
[9] Stanescu T et al 2008 Phys. Rev. A 78 023616
[10] Snoke D W et al 1990 Phys. Rev. B 41 11171
[11] Butov L V 2007 J. Phys.: Conds. Matter 19 295202
[12] Hakioglu T and Sahin M 2007 Phys. Rev. Lett. 98 166405
[13] Yao W and Niu Q 2008 Phys. Rev. Lett. 101 106401
[14] Butov L V et al 1994 Phys. Rev. Lett. 73 304
[15] Butov L V et al 2002 Nature 418 751
[16] Wu C et al 2010 Int. J. Mod. Phys. B V24 311
[17] Zhou F 2003 Int. J. Mod. Phys. B 17 2643
[18] Larson J and Sjöqvist E 2009 Phys. Rev. A 79 043627
[19] Leggett A J 2001 Rev. Mod. Phys. 73 307
[20] Madison K W et al 2000 Phys. Rev. Lett. 84 806
[21] High A A et al 2011 arXiv:1103.0321
[22] Ho T L and Zhang S 2010 arXiv:1007.0650
[23] Wang C et al 2010 Phys. Rev. Lett. 105 160403
[24] Yip S K 2010 arXiv:1008.2263
[25] Zhang Y, Mao L and Zhang C 2011 arXiv:1102.4045
[26] Xu Z F et al 2011 Phys. Rev. A 83 053602
[27] Kawakami T et al 2011 arXiv:1104.4179
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|