NUCLEAR PHYSICS |
|
|
|
|
Tensor Coupling Effects on Spin Symmetry in the Anti-Lambda Spectrum of Hypernuclei |
SONG Chun-Yan1, YAO Jiang-Ming2,3, MENG Jie4,3,5**
|
1State Key Laboratory of Software Development Environment, and School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191
2School of Physical Science and Technology, Southwest University, Chongqing 400715
3State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871
4School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191
5Department of Physics, University of Stellenbosch, Stellenbosch, South Africa
|
|
Cite this article: |
SONG Chun-Yan, YAO Jiang-Ming, MENG Jie 2011 Chin. Phys. Lett. 28 092101 |
|
|
Abstract Effects of ΛΛ ω−tensor coupling on the spin symmetry of Λ spectra in Λ−nucleus systems are studied using relativistic mean-field theory. Taking 12C+Λ as an example, it is found that the tensor coupling enlarges the spin−orbit splittings of Λ by a factor of 5 but has a negligible effect on the wave functions of Λ. Similar conclusions are observed in other Λ−nuclei, including 16O+Λ, 40Ca+Λ and 208Pb+Λ. It is indicated that the spin symmetry in anti-lambda-nucleus systems is still a good approximation irrespective of the tensor coupling.
|
Keywords:
21.80.+a
21.10.Hw
21.30.Fe
21.10.Pc
|
|
Received: 30 November 2010
Published: 30 August 2011
|
|
PACS: |
21.80.+a
|
(Hypernuclei)
|
|
21.10.Hw
|
(Spin, parity, and isobaric spin)
|
|
21.30.Fe
|
(Forces in hadronic systems and effective interactions)
|
|
21.10.Pc
|
(Single-particle levels and strength functions)
|
|
|
|
|
[1] Mayer M G and Jensen J H D 1955 Elementary Theory of Nuclear Shell Struture (New York: Wiley)
[2] Bürvenich T et al 2002 Phys. Lett. B 542 261
[3] Mishustin I N et al 2005 Phys. Rev. C 71 035201
[4] Friedman E, Gal A and Mareš J 2005 Nucl. Phys. A 761 283
[5] Larionov A B et al 2008 Phys. Rev. C 78 014604
[6] Larionov A B et al 2009 Phys. Rev. C 80 021601
[7] Bahri C et al 1992 Phys. Rev. Lett. 68 2133
[8] Blokhin A L et al 1995 Phys. Rev. Lett. 74 4149
[9] Ginocchio J N 1997 Phys. Rev. Lett. 78 436
Ginocchio J N 2005 Phys. Rep. 414 165 and references therein
[10] Meng J et al 1998 Phys. Rev. C 58 R628
[11] Meng J et al 1999 Phys. Rev. C 59 154
[12] Zhou S G et al 2003 Phys. Rev. Lett. 91 262501
[13] Song C Y et al 2009 Chin. Phys. Lett. 26 122102
[14] Hashimoto O and Tamura H 2006 Prog. Part. Nucl. Phys. 57 564
[15] Arima A and Terasawa T 1960 Prog. Theor. Phys. 23 115
[16] Otsuka T et al 2005 Phys. Rev. Lett. 95 232502
[17] Brown B A et al 2006 Phys. Rev. C 78 061303
[18] Colò G et al 2007 Phys. Lett. B 646 227
[19] Bai C L et al 2009 Phys. Rev. C 79 041301(R)
[20] Bai C L et al 2009 Phys. Lett. B 675 28
[21] Mao G J, 2003 Phys. Rev. C 67 044318
[22] Long W H et al 2008 Europhys. Lett. 82 12001
[23] Tarpanov D et al 2008 Phys. Rev. C 77 054316
[24] Long W H et al 2006 Phys. Lett. B 639 242
[25] Ajimura S et al 2001 Phys. Rev. Lett. 86 4255
[26] Noble J V 1980 Phys. Lett. B 89 325
[27] Jennings B K 1990 Phys. Lett. B 246 325
Chiapparini M et al 1991 Nucl. Phys. A 529 589
[28] Yao J M et al 2008 Chin. Phys. Lett. 25 1629
[29] Meng J et al 2006 Prog. Part. Nucl. Phys. 57 470
[30] Cohen J and Weber H J 1991 Phys. Rev. C 44 1181
[31] Long W H et al 2004 Phys. Rev. C 69 034319
[32] Song C Y et al 2010 Int. J. Mod. Phys. E 19 2538
[33] Mareš J, and Jennings B K 1994 Phys. Rev. C 49 2472
[34] Ma Z Y et al 1996 Nucl. Phys. A 608 305
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|