GENERAL |
|
|
|
|
Coherence-Resonance-Induced Neuronal Firing near a Saddle-Node and Homoclinic Bifurcation Corresponding to Type-I Excitability |
JIA Bing1,2, GU Hua-Guang1,2**, LI Yu-Ye2
|
1School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092
2College of Life Science, Shaanxi Normal University, Xi'an 710062
|
|
Cite this article: |
JIA Bing, GU Hua-Guang, LI Yu-Ye 2011 Chin. Phys. Lett. 28 090507 |
|
|
Abstract Excitability is an essential characteristic of excitable media such as nervous and cardiac systems. Different types of neuronal excitability are related to different bifurcation structures. We simulate the coherence resonance effect near a saddle-node and homoclinic bifurcation corresponding to type-I excitability in a theoretical neuron model, and recognize the obvious features of the corresponding firing pattern. Similar firing patterns are discovered in rat hippocampal CA1 pyramidal neurons. The results are not only helpful for understanding the dynamics of the saddle-node bifurcation and type-I excitability in a realistic nervous system, but also provide a practical indicator to identify types of excitability and bifurcation.
|
Keywords:
05.45.-a
87.19.L-
|
|
Received: 05 May 2011
Published: 30 August 2011
|
|
|
|
|
|
[1] Izhikevich E M 2000 Int. J Bifur. Chaos 10 1171
[2] Zhang N, Zhang H M, Liu Z Q, Ding X L, Yang M H, Gu H G and Ren W 2009 Chin. Phys. Lett. 26 110501
[3] Hodgkin A L 1948 J. Physiol. 107 165
[4] Tateno T, Harsch A and Robinson H P C 2004 J. Neurophysiol. 92 2283
[5] Galán R F, Ermentrout G B and Urban N N 2005 Phys. Rev. Lett. 94 158101
[6] Tateno T, Harsch A and Robinson H P C 2007 Biophys. J 92 683
[7] Prescott S A, Ratté S, Koninck Y D and Sejnowski T J 2008 J. Neurophysiol. 100 3030
[8] Xie Y, Xu J X, Kang Y M, Hu S J and Duan Y B 2004 Chin. Phys. 13 1396
[9] Gutkin B S and Ermentrout G B 1998 Neural Comput. 10 1047
[10] Ermentrout G B 1996 Neural Comput. 8 979
[11] Prescott S A, De Koninck Y, Sejnowski T J 2008 PLoS Comput. Biol. 4 e1000198
[12] Liu Y, Yang J and Hu S J 2008 J. Comput. Neurosci. 24 95
[13] Wang W, Wang Y Q and Wang Z D 1998 Phys. Rev. E 57 R2527
[14] Yu Y G, Wang W, Wang J F, Liu F 2001 Phys. Rev. E 63 021907
[15] Wang W and Wang ZD 1997 Phys. Rev. E 55 7379
[16] Gu H G, Jia B and Lu Q S 2011 Cogn. Neurodyn. 5 87
[17] Gu H G, Ren W, Lu Q S, Wu S G, Yang M H and Chen W J 2001 Phys. Lett. A 285 63
[18] Yang M H, Liu Z Q, Li L, Xu Y L, Liu H J, Gu H G and Ren W 2009 Int. J. Bifur. Chaos 19 453
[19] Braun H A, Wissing H and Schäfer K 1994 Nature 367 270
[20] Xing J L, Hu S J, Xu H, Han S and Wan Y H 2001 NeuroReport 12 1311
[21] Tateno T and Pakdaman K 2004 Chaos 14 511
[22] Lim W and Kim S Y 2007 J. Korean Phys. Soc. 50 239
[23] Morris C and Lecar H 1981 Biophys. J 35 193
[24] Mannella R and Palleschi V 1989 Phys. Rev. A 40 3381
[25] Yooer C F, Wei F, Xu J X and Zhang X H 2011 Chin. Phys. Lett. 28 030501
[26] Pikovsky A S and Kurth J 1997 Phys. Rev. Lett. 78 775
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|