CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Optical Temperature Sensor Using Infrared-to-Visible-Frequency Upconversion in Er 3+/Yb 3+−Codoped Bi3TiNbO9 Ceramics |
CHEN Heng-Zhi1, YANG Bin1**, SUN Yan1, ZHANG Ming-Fu2, WANG Zhu1, ZHANG Rui1, ZHANG Zhi-Guo1, CAO Wen-Wu 1,3
|
1Center for Condensed Matter Science and Technology, Department of Physics, Harbin Institute of Technology, Harbin 150001
2Center for Composite Materials, Harbin Institute of Technology, Harbin 150001
3Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
|
|
Cite this article: |
CHEN Heng-Zhi, YANG Bin, SUN Yan et al 2011 Chin. Phys. Lett. 28 087804 |
|
|
Abstract An optical temperature sensor based on infrared-to-visible upconversion emission in Er3+/Yb3+ co−doped Bi3TiNbØ9 (BTN) ceramics is reported. The fluorescence intensity ratio of the green upconversion photoluminescence (UC−PL) around 524 nm and 545 nm depends on temperature. The operating temperature range and the maximum sensitivity of Er3+/Yb3+ co−doped Bi3TiNbO9 ceramics are 123–693 K and 0.0032 K−1, respectively. BTN:Er3+/Yb3+ ceramic has good thermal, physical and chemical stability, great UC−PL intensity and low cost fabrication. The results imply that Er3+/Yb3+ co−doped Bi3TiNbO9 ceramic is promising for applications in wide-temperature-range sensors.
|
Keywords:
78.20.-e
42.70.-a
42.79.Nv
|
|
Received: 24 May 2011
Published: 28 July 2011
|
|
PACS: |
78.20.-e
|
(Optical properties of bulk materials and thin films)
|
|
42.70.-a
|
(Optical materials)
|
|
42.79.Nv
|
(Optical frequency converters)
|
|
|
|
|
[1] Shojiya M, Takahashi M, Kanno R and Kadono K 1994 Appl. Phys. Lett. 65 1874
[2] de Araujo C B, Menezes L S, Maciel G S, Acioli L H, Gomes A S L, Messaddeq Y, Florez A and Aegerter M A 1996 Appl. Phys. Lett. 68 602
[3] Zhang H X, Kam C H, Zhou Y, Han X Q, Buddhudu S, Xiang Q, Lam Y L and Chan Y C, 2000 Appl. Phys. Lett. 77 609
[4] Chen G Y, Zhang Y G, Somesfalean G, Zhang Z G, Sun Q and Wang F P 2006 Appl. Phys. Lett. 89 163105
[5] dos Santos P V, de Araujo M T, Gouveia-Net A S, Medeiros Neto J A and Sombra A S B 1998 Appl. Phys. Lett. 73 578
[6] dos Santos P V, de Araujo M T, Gouveia-Neto A S, Medeiros Neto J A and Sombra A S B 1999 IEEE J. Quantum. Elect. 35 395
[7] de Camargo A S S, Possatto J F, Nunes L A O, Botero E R, Andreeta E R M, Garcia D and Eiras J A 2006 Solid State Commun. 137 1
[8] Li C R, Dong B, Li S F and Song C L 2007 Chem. Phys. Lett. 443 426
[9] Dai S X, Zhang X H, Xu T F, Shen X, Wang X S and Nie Q H 2006 Chin. Phys. Lett. 23 1810
[10] Zhang L Y, Xu S Q and Hu L L 2007 Chin. Phys. Lett. 24 2945
[11] Shinn M D, Sibley W A, Drexhage M G and Brown R N 1983 Phys. Rev. B 27 6635
[12] Yang B, Chen H Z, Zhang M F, Wang F Y, Cheah K and Cao W W 2009 Appl. Phys. A 96 1017
[13] Zhou Z Y, Dong X L and Yan H X 2006 Scripta Mater. 55 791
[14] Aisaka T, Fujii M and Hayashi S 2008 Appl. Phys. Lett. 92 132105
[15] Capobianco J A, Vetrone F and Boyer J C 2002 J. Phys. Chem. B 106 1181
[16] Salley G M, Valiente R and Gudel H U 2001 J. Lumin. 94 305
[17] Pollnau M, Gamelin D R, Luthi S R and Gudel H U 2000 Phys. Rev. B 61 3337
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|