CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Temperature-Induced Phase Transition of In2O3 from a Rhombohedral Structure to a Body-Centered Cubic Structure |
YANG Lin-Hong, DONG Hong-Xing, SUN Zheng, SUN Liao-Xin, SHEN Xue-Chu, CHEN Zhang-Hai**
|
State Key Laboratory of Surface Physics and Department of Physics, Laboratory for Advanced Materials, Fudan University, Shanghai 200433
|
|
Cite this article: |
YANG Lin-Hong, DONG Hong-Xing, SUN Zheng et al 2011 Chin. Phys. Lett. 28 087803 |
|
|
Abstract We report an experimental study on the temperature-induced phase transition of three-dimensional nanosheet-based flower-like microspheres (NBFMs) of In2O3. Using InOOH as precursor, rhombohedral−In2O3 NBFMs are fabricated. Temperature−induced phase transition of In2O3 NBFMs from a rhombohedral (rh) structure to a body−centered cubic (bcc) structure is examined by Raman spectroscopy and x-ray diffraction. The critical phase transition temperature is found to be about 500 °C. Photoluminescence (PL) spectra of In2O3 are measured before annealing and after annealing at different temperatures. The PL spectral results provide further evidence for the phase transition, confirming the fabrication of bcc−In2O3 NBFMs via a simple annealing method.
|
Keywords:
78.55.-m
63.22.Kn
64.70.-p
81.07.-b
|
|
Received: 02 April 2011
Published: 28 July 2011
|
|
PACS: |
78.55.-m
|
(Photoluminescence, properties and materials)
|
|
63.22.Kn
|
(Clusters and nanocrystals)
|
|
64.70.-p
|
(Specific phase transitions)
|
|
81.07.-b
|
(Nanoscale materials and structures: fabrication and characterization)
|
|
|
|
|
[1] Seo W S, Jo H H, Lee K and Park J T 2003 Adv. Mater. 15 795
[2] Hao Y F, Meng G W, Ye C H and Zhang L D 2005 Cryst. Growth Design 5 1617
[3] Kong X Y and Wang Z L 2003 Solid State Commun. 128 1
[4] Korotcenkov G, Brinzari V, Ivanov M, Cerneavschi A, Rodriguez J, Cirera A, Cornet A and Morante J 2005 Thin Solid Films 479 38
[5] Matino F, Persano L, Arima V, Pisignano D, Blyth R I R, Cingo-lani R and Rinaldi R 2005 Phys. Rev. B 72 085437
[6] Walsh A et al 2008 Phys. Rev. Lett. 100 167402
[7] Epifani M, Siciliano P, Gurlo A, Barsan N and Weimar U 2004 J. Am. Chem. Soc. 126 4078
[8] Yu D B, Yu S H, Zhang S Y, Zuo J, Wang D B and Qian Y T 2003 Adv. Funct. Mater. 13 497
[9] Zhuang Z B, Peng Q, Liu J F, Wang X and Li Y D 2007 Inorg. Chem. 46 5179
[10] Liu D, Lei W, Zou B, Yu S D, Hao J and Wang K 2008 J. Appl. Phys. 104 083506
[11] Chu D W, Zeng Y P, Jiang D L and Xu J J 2007 Nanotechnology 18 435605
[12] Ko T S, Chu C P, Chen J R, Chang Y A, Lu T C, Kuo H C and Wang S C 2007 J. Vacuum Sci. Technol. A: Vac. Surf. Films 25 1038
[13] Pan Z W, Dai Z R and Wang Z L 2001 Science 291 1497
[14] Li C, Zhang D H, Han S, Liu X L, Tang T and Zhou C W 2003 Adv. Mater. 15 143
[15] Yang H Q, Zhang R G, Dong H X, Yu J, Yang W Y and Chen D C 2008 Cryst. Growth Des. 8 3154
[16] Dong H X, Chen Z H, Sun L X, Zhou L, Ling Y J, Yu C Z, H Hoe Tan, Jagadish C and Shen X C 2008 J. Phys. Chem. C 113 10511
[17] Sobotta H, Neumann H, Kuhn G and Riede V 1990 Cryst. Res. Technol. 25 61
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|