CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Structural, Electronic and Optical Properties of BiAl xGa1−xO3 (x=0, 0.25, 0.5 and 0.75) |
GONG Sai, WANG Yue-Hua**, ZHAO Xin-Yin, ZHANG Min, ZHAO Na, DUAN Yi-Feng
|
Department of Physics, China University of Mining and Technology, Xuzhou 221116
|
|
Cite this article: |
GONG Sai, WANG Yue-Hua, ZHAO Xin-Yin et al 2011 Chin. Phys. Lett. 28 087402 |
|
|
Abstract A first principles study using the full potential linearized augmented plane wave (FP-LAPW) method is applied to study the structural, electronic and optical properties of BiAlxGa1−xO3. The results show that the alloys become markedly hard as the Al concentration increases. The calculated structural parameters are in good agreement with the experimental data. The band structure and density of states are obtained, which indicate that BiAlxGa1−xO3 has an indirect band gap. Moreover, the optical properties are calculated and analyzed in detail. It is proposed that BiAlxGa1−xO3 is a promising dielectric material.
|
Keywords:
74.25.Gz
78.20.Ci
73.20.At
|
|
Received: 11 September 2010
Published: 28 July 2011
|
|
PACS: |
74.25.Gz
|
(Optical properties)
|
|
78.20.Ci
|
(Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))
|
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
|
|
|
[1] Bednorz J G and Muller K A 1984 Phys. Rev. Lett. 52 2289
[2] Samantaray C B, Sim H and Hwane H 2005 Microelectron. J. 36 725
[3] Samantaray C B, Sim H and Hwane H 2004 Physica B 351 158
[4] Wang H, Wang B, Li Q, Zhu Z, Wang R and Woo C H 2007 Phys. Rev. B 75 245209
[5] Henrich V E 1985 Rep. Prog. Phys. 48 1481
[6] Eitel R E , Zhang S J , Shrout T R, Randall C A and Levin I 2004 J. Appl. Phys. 96 2828
[7] Zhang S J, Randall C A and Shrout T R 2003 Appl. Phys. Lett. 83 3150
[8] Cheng J R, Zhu W Y, Li N and Cross L E 2003 Mater. Lett. 57 2090
[9] Inaguma Y, Miyaguchi A, Yoshida M, Katsumata T, Shimojo Y, Wang R P and Sekiya T 2004 J. Appl. Phys. 95 231
[10] Halilov S V, Fornari M and Singh D J 2004 Phys. Rev. B 69 174107
[11] Eitel R E, Randall C A, Shrout T R, Rehrig P W, Hackenberger W and Park S E 2001 Jpn. J. Appl. Phys. 40 5999
[12] Iniguez J, Vanderbilt D and Bellaiche L 2003 Phys. Rev. B 67 224107
[13] Cheng J, Eitel R, Li N and Cross L E 2003 J. Appl. Phys. 94 605
[14] Hill N A and Rabe K M 1999 Phys. Rev. B 59 8759
[15] Seshadri R and Hill N A 2001 Chem. Mater. 13 2892
[16] Baettig P, Schelle C F, LeSar R, Waghmare U V and Spaldin N A 2005 Chem. Mater. 17 1376
[17] Belik A A, Wuernisha T, Kamiyama T, Mori K, Maie M, Nagai T, Matsui Y and Takayama-Muromachi E 2006 Chem. Mater. 18 133
[18] Wang H, Wang B, Li Q, Zhu Z, Wang R and Woo C H 2007 Phys. Rev. B 75 245209
[19] Li C L, Wang H, Wang B and Wang R 2007 Appl. Phys. Lett. 91 071902
[20] Li C L, Wang B, Wang R, Wang H and Lu X Y 2008 Physica B 403 539
[21] Li C L, Wang B, Wang R, Wang H and Lu X Y 2008 Com. Mater. Sci. 42 614
[22] Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J 2001 WIEN2K (Vienna: Vienna University of Technology)
[23] Saha S and Sinha T P 2000 Phys. Rev. B 62 8828
[24] Murnaghan F D 1944 Proc. Natl. Acad. Sci. 30 244
[25] Ashizuka M and Murkami M 1989 J. Jpn. Met. 53 88
[26] Sung C and Sung M 1996 Mater. Chem. Phys. 43 1
[27] Wang Y X, Aari M, Sasaki T, Wang C L and Zhong W L 2005 Surf. Sci. 585 75
[28] Almeida J S and Ahuja R 2006 Phys. Rev. B 73 165102
[29] Xu M, Wang S Y, Yin G, Li J, Zheng Y X and Chen L Y 2006 Appl. Phys. Lett. 89 151908
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|