Chin. Phys. Lett.  2011, Vol. 28 Issue (8): 087306    DOI: 10.1088/0256-307X/28/8/087306
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Dipolar and Quadrupolar Modes of SiO2/Au Nanoshell Enhanced Light Trapping in Thin Film Solar Cells
BAI Yi-Ming1**, WANG Jun2, CHEN Nuo-Fu1,3, YAO Jian-Xi1, ZHANG Xing-Wang3, YIN Zhi-Gang3, ZHANG Han3, HUANG Tian-Mao3
1School of Renewable Energy Engineering, North China Electric Power University, Beijing 102206
2National Engineering Research Center for Optoelectronic Devices, Institute of Semiconductors, Chinese Academy of Sciences, PO Box 912, Beijing 100083
3Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, PO Box 912, Beijing 100083
Cite this article:   
BAI Yi-Ming, WANG Jun, CHEN Nuo-Fu et al  2011 Chin. Phys. Lett. 28 087306
Download: PDF(844KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Dipolar and quadrupolar resonance wavelengths of SiO2/Au nanoshell surface plasmons are designed at 560 nm to enhance the light trapping in thin film solar cells. In order to quantitatively describe the light trapping effect, the forward−scattering efficiency (FSE) and the light trapping efficiency (LTE) are proposed by considering the light scattering direction of SiO2/Au nanoshells. Based on the Mie theory, the FSE and the LTE are calculated for SiO2/Au nanoshells of different dimensions, and the contributions of the dipolar and quadrupolar modes to the light trapping effect are analyzed in detail. When the surface coverage of nanoshells is 5%, the LTEs are 21.7% and 46.9% for SiO2/Au nanoshells with sizes of (31 nm, 69 nm) and (53 nm, 141 nm), respectively. The results indicate that the SiO2/Au nanoshell whose quadrupolar mode peak is designed to the strongest solar energy flux density of the solar spectrum facilitates the further enhancement of light harvesting in thin film solar cells.
Keywords: 73.20.Mf      42.25.Fx      84.60.Jt     
Received: 03 September 2010      Published: 28 July 2011
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  42.25.Fx (Diffraction and scattering)  
  84.60.Jt (Photoelectric conversion)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/8/087306       OR      https://cpl.iphy.ac.cn/Y2011/V28/I8/087306
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
BAI Yi-Ming
WANG Jun
CHEN Nuo-Fu
YAO Jian-Xi
ZHANG Xing-Wang
YIN Zhi-Gang
ZHANG Han
HUANG Tian-Mao
[1] Polman A 2008 Science 322 868
[2] Pillai S et al 2007 J. Appl. Phys. 101 093105
[3] Schaadt D M, Feng B and E T Yu 2005 Appl. Phys. Lett. 86 063106
[4] Nakayama K, Tanabe K and Atwater H A 2008 Appl. Phys. Lett. 93 121904
[5] Yang M D et al 2008 Opt. express 16 15754
[6] Derkacs D et al 2006 Appl. Phys. Lett. 89 093103
[7] Teperik T V et al 2008 Nature Photon. 2 299
[8] Catchpole K R and Polmanb A 2008 Appl. Phys. Lett. 93 191113
[9] Joseph R C and Halas N J 2006 Appl. Phys. Lett. 89 153120
[10] Bai Y M et al 2010 Sci. Chin. E 53 2228
[11] Oldenburg S J, Jackson J B and Westcott S L 1999 Appl. Phys. Lett. 75 2897
[12] Bohren C F and Huffman D R 1983 Absorption and Scattering of Light by Small Particles (New York: John Wiley & Sons)
[13] Palk E D 1985 Handbook of Optical Constants of Solids (Washington DC: Academic)
Related articles from Frontiers Journals
[1] KIM Un-Chol, JIANG Xiao-Qing. Numerical Analysis of Efficiency Enhancement in Plasmonic Thin-Film Solar Cells by Using the SILVACO TCAD Simulator[J]. Chin. Phys. Lett., 2012, 29(6): 087306
[2] YAN Qin,LU Jian,NI Xiao-Wu**. Measurement of the Velocities of Nanoparticles in Flowing Nanofluids using the Zero-Crossing Laser Speckle Method[J]. Chin. Phys. Lett., 2012, 29(4): 087306
[3] LI Cheng-Guo, GAO Yong-Hao, XU Xing-Sheng. Angular Tolerance Enhancement in Guided-Mode Resonance Filters with a Photonic Crystal Slab[J]. Chin. Phys. Lett., 2012, 29(3): 087306
[4] KONG Qi, SHI Qing-Fan, YU Guang-Ze, ZHANG Mei. A New Method for Electromagnetic Time Reversal in a Complex Environment[J]. Chin. Phys. Lett., 2012, 29(2): 087306
[5] MA Jian-Yong, FAN Yong-Tao. Guided Mode Resonance Transmission Filters Working at the Intersection Region of the First and Second Leaky Modes[J]. Chin. Phys. Lett., 2012, 29(2): 087306
[6] ZHAI Zhi-Yuan, YANG Tao, PAN Xiao-Yin**. Exact Propagator for the Anisotropic Two-Dimensional Charged Harmonic Oscillator in a Constant Magnetic Field and an Arbitrary Electric Field[J]. Chin. Phys. Lett., 2012, 29(1): 087306
[7] SHI Fan, LI Wei, WANG Pi-Dong, LI Jun, WU Qiang, WANG Zhen-Hua, ZHANG Xin-Zheng**. Optically Controlled Coherent Backscattering from a Water Suspension of Positive Uniaxial Microcrystals[J]. Chin. Phys. Lett., 2012, 29(1): 087306
[8] WANG Peng, WANG Rong-Yao**, JIN Jing-Yang, XU Le, SHI Qing-Fan**. The Morphological Change of Silver Nanoparticles in Water[J]. Chin. Phys. Lett., 2012, 29(1): 087306
[9] XU Wei-Wei, HU Lin-Hua, LUO Xiang-Dong, LIU Pei-Sheng, DAI Song-Yuan**. The Electric Mechanism of Surface Pretreatments for Dye-Sensitized Solar Cells Based on Internal Equivalent Resistance Analysis[J]. Chin. Phys. Lett., 2012, 29(1): 087306
[10] GUO Yu-Bing, CHEN Yong-Hai**, XIANG Ying, QU Sheng-Chun, WANG Zhan-Guo . Photorefractive Effect of a Liquid Crystal Cell with a ZnO Nanorod Doped in Only One PVA Layer[J]. Chin. Phys. Lett., 2011, 28(9): 087306
[11] LI Ming-Zhu, AN Zheng-Hua**, ZHOU Lei, MAO Fei-Long, WANG Heng-Liang . Strong Coupling between Propagating and Localized Surface Plasmons in Plasmonic Cavities[J]. Chin. Phys. Lett., 2011, 28(7): 087306
[12] ZHAO Yan-Zhong**, SUN Hua-Yan, ZHENG Yong-Hui . An Approximate Analytical Propagation Formula for Gaussian Beams through a Cat-Eye Optical Lens under Large Incidence Angle Condition[J]. Chin. Phys. Lett., 2011, 28(7): 087306
[13] ZHANG Jin-Long, ** . Analysis of Optical Vortices in the Near Field of a Thin Metal Film[J]. Chin. Phys. Lett., 2011, 28(5): 087306
[14] LIU Hong-Wei**, KAN Qiang, WANG Chun-Xia, HU Hai-Yang, XU Xing-Sheng, CHEN Hong-Da . Light Extraction Enhancement of GaN LED with a Two-Dimensional Photonic Crystal Slab[J]. Chin. Phys. Lett., 2011, 28(5): 087306
[15] CAO Zhi-Shen, PAN Jian, CHEN Zhuo, ZHAN Peng, MIN Nai-Ben, WANG Zhen-Lin** . Pure Electric and Pure Magnetic Resonances in Near-Infrared Metal Double-Triangle Metamaterial Arrays[J]. Chin. Phys. Lett., 2011, 28(5): 087306
Viewed
Full text


Abstract