Chin. Phys. Lett.  2011, Vol. 28 Issue (8): 087303    DOI: 10.1088/0256-307X/28/8/087303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Transformation from AA to AB-Stacked Bilayer Graphene on α−SiO2 under an Electric Field
LIU Yan1, AO Zhi-Min3**, WANG Tao2**, WANG Wen-Bo2, SHENG Kuang2, YU Bin2,4
1Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 230031
2College of Electrical Engineering, Zhejiang University, Hangzhou 230031
3School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
4College of Nanoscale Science and Engineering, State University of New York, Albany, New York 12203, USA
Cite this article:   
LIU Yan, AO Zhi-Min, WANG Tao et al  2011 Chin. Phys. Lett. 28 087303
Download: PDF(954KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The energetic and electronic structure of bilayered graphene (BLG) with AA stacking arrangement on a SiO2 substrate is investigated in the presence of an electric field F of different intensities by ab initio density functional calculations. The AA−stacked bilayer graphene is stable on the SiO2 substrate in the absence of an electric field. However, as F increases, the AA-stacked bilayer graphenes are gradually shifted with each other and finally transfers into AB-stacked bilayer graphenes. The bandgap is accordingly changed.
Keywords: 73.20.-r      68.35.Bg      68.35.Bg      85.30.De     
Received: 13 February 2011      Published: 28 July 2011
PACS:  73.20.-r (Electron states at surfaces and interfaces)  
  68.35.bg (Semiconductors)  
  68.35.bg (Semiconductors)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/8/087303       OR      https://cpl.iphy.ac.cn/Y2011/V28/I8/087303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Yan
AO Zhi-Min
WANG Tao
WANG Wen-Bo
SHENG Kuang
YU Bin
[1] Schwierz F 2010 Nature Nanotechnol. 5 487
[2] Geim A K 2009 Science 324 1530
[3] Allen M J, Tung V C and Kane R B 2010 Chem. Rev. 110 132
[4] Lin YM, Dimitrakopoulos C, Jenkins K A, Farmer D B and Chiu H Y 2010 Science 327 662
[5] Lin Y M and Avouris P 2008 Nano Lett. 8 2119
[6] Lin Y M, Chiu H Y, Jenkins K A, Farmer D B, Avouris P and Alberto V G 2010 IEEE Electron. Device Lett. 31 68
[7] Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Ponomarenko L A, Jiang D and Geim A K 2006 Phys. Rev. Lett. 97 016801
[8] Nakada K, Fujita M Dresselhaus G and Dresselhaus M S 1996 Phys. Rev. B 54 17954
[9] Wehling T O, Balatsky A V, Katsnelson M I, Lichtenstein A I, Scharnberg K and Wiesendanger R 2007 Phys. Rev. B 75 125425
[10] Blake P, Hill E W, Castro Neto A H, Novoselov K S, Jiang D, Yang R, Booth T J and Geim A K 2007 Appl. Phys. Lett. 91 063124
[11] Ao Z M, Zheng W T and Jiang Q 2008 Nanotechnology 10 275710
[12] Kang Y J, Kang J and Chang K J 2008 Phys. Rev. B 78 115404
[13] Shemella P and Nayak S K 2009 Appl. Phys. Lett. 94 032101
[14] Delley B 2000 J. Chem. Phys. 113 7756
[15] Hammer B, Hanse L B and N Ørskov J K 1999 Phys. Rev. B 59 7413
[16] Hass J, Feng R, Millan-Otoya J E, Li X, Sprinkle M, First P N, de Heer W A, Conrad E H and Berger C 2007 Phys. Rev. B 75 214109
[17] Charlier J C, Michenaud J P and Gonze X 1992 Phys. Rev. B 46 4531
[18] Lee J K, Lee S C, Ahn J P, Kim S C, Wilson J I B and John P 2008 J. Chem. Phys. 129 234709
[19] Ishigami M, Chen J H, Cullen W G, Fuhrer M S and Williams E D 2007 Nano Lett. 7 1643
[20] Dahn J R, Fong R and Spoon M J 1990 Phys. Rev. B 42 6424
[21] Horiuchi S, Gotou T, Fujiwara M, Sotoskc R and Hirata M 2003 Jpn. J. Appl. Phys. 42 1073
[22] Adam S, Hwang E H, Galitski V M and Sarma S D 2007 Proc. Natl. Acad. Sci. 104 18392
[23] Chen J H, Jang C, Adam S, Fuhrer M S, Williams E D and Ishigami M 2008 Nature Phys. 4 377
[24] Zhou S Y, Gweon G H, Fedorov A V, First P N, Deheer W A, Lee D H, Guinea F, Castro Neto A H and Lanzara A 2007 Nature Mater. 6 770
[25] Baskin Y and Meyer L 1955 Phys. Rev. 100 544
[26] Zacharia R, Ulbricht H and Hertel T 2004 Phys. Rev. B 69 155406
[27] Madelung O and Schulz M, Landolt-Börnstein 1987 Zahlenwerte und Funktionen aus Naturwissenchaften und Technik (Berlin: Springer-Verlag) New Series, Group III vol 22
[28] Leenaerts O, Partoens B and Peeters FM 2009 Phys. Rev. B 80 245422
[29] Zhang Y B, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R and Wang F 2009 Nature 459 820
Related articles from Frontiers Journals
[1] SUN Bing, CHANG Hu-Dong, LU Li, LIU Hong-Gang, WU De-Xin. High-Quality Single Crystalline Ge(111) Growth on Si(111) Substrates by Solid Phase Epitaxy[J]. Chin. Phys. Lett., 2012, 29(3): 087303
[2] CHEN Shun-Sheng, YANG Chang-Ping, LUO Xiao-Jing, Bä, rner K., Medvedeva I. V.. Alternating-Current Transport Properties of the Interface between Nd0.7Sr0.3MnO3 Ceramic and a Ag Electrode[J]. Chin. Phys. Lett., 2012, 29(2): 087303
[3] MENG Xiu-Qing**, FANG Yun-Zhang, WU Feng-Min. Amphiphilic Bio-molecules/ZnO Interface: Enhancement of Bio-affinity and Dispersibility[J]. Chin. Phys. Lett., 2012, 29(1): 087303
[4] FENG Wei**. Terahertz Current Oscillation in Wurtzite InN[J]. Chin. Phys. Lett., 2012, 29(1): 087303
[5] LIU Sheng-Hou, CAI Yong**, GONG Ru-Min, WANG Jin-Yan, ZENG Chun-Hong, SHI Wen-Hua, FENG Zhi-Hong, WANG Jing-Jing, YIN Jia-Yun, Cheng P. Wen, QIN Hua, ZHANG Bao-Shun . Enhancement-Mode AlGaN/GaN High Electron Mobility Transistors Using a Nano-Channel Array Structure[J]. Chin. Phys. Lett., 2011, 28(7): 087303
[6] CHEN Liang**, ZHANG Wan-Rong, XIE Hong-Yun, JIN Dong-Yue, DING Chun-Bao, FU Qiang, WANG Ren-Qing, XIAO Ying, ZHAO Xin . Restabilizing Mechanisms after the Onset of Thermal Instability in Bipolar Transistors[J]. Chin. Phys. Lett., 2011, 28(7): 087303
[7] Kuang-Po HSUEH**, Shih-Tzung SU, Jun ZENG . Numerical Simulation of 4H-SiC Metal Semiconductor Field Transistors[J]. Chin. Phys. Lett., 2011, 28(7): 087303
[8] Seoung-Hwan Park**, Yong-Tae Moon, Jeong Sik Lee, Ho Ki Kwon, Joong Seo Park, Doyeol Ahn . Optical Gain Analysis of Graded InGaN/GaN Quantum-Well Lasers[J]. Chin. Phys. Lett., 2011, 28(7): 087303
[9] PAN Feng, QIAN Xian-Rui, HUANG Li-Zhen, WANG Hai-Bo, YAN Dong-Hang** . Significant Improvement of Organic Thin-Film Transistor Mobility Utilizing an Organic Heterojunction Buffer Layer[J]. Chin. Phys. Lett., 2011, 28(7): 087303
[10] XU Xiao-Bo**, ZHANG He-Ming . An Analytical Avalanche Multiplication Model for Partially Depleted Silicon-on-Insulator SiGe Heterojunction Bipolar Transistors[J]. Chin. Phys. Lett., 2011, 28(7): 087303
[11] CHEN Bin**, YANG Yin-Tang, CHAI Chang-Chun, ZHANG Xian-Jun . Quantitatively Exploring the Effect of a Triangular Electrode on Performance Enhancement in a 4H-SiC Metal-Semiconductor-Metal Ultraviolet Photodetector[J]. Chin. Phys. Lett., 2011, 28(6): 087303
[12] LI Bi-Xin, CHEN Jiang-Shan, ZHAO Yong-Biao, MA Dong-Ge** . Frequency-Dependent Electrical Transport Properties of 4,4',4[J]. Chin. Phys. Lett., 2011, 28(5): 087303
[13] SHI Yan-Li, MEI Feng, YU Ya-Fei, ZHANG Zhi-Ming** . Controlled Phase Gate Based on an Electron Floating on Helium[J]. Chin. Phys. Lett., 2011, 28(5): 087303
[14] HU Sheng-Dong, **, ZHANG Ling, LUO Xiao-Rong, ZHANG Bo, LI Zhao-Ji, WU Li-Juan . Design of a 1200-V Thin-Silicon-Layer p-Channel SOI LDMOS Device[J]. Chin. Phys. Lett., 2011, 28(12): 087303
[15] ZHOU Bin, WANG Jin-Yan**, MENG Di, LIN Shu-Xun, FANG Min, DONG Zhi-Hua, YU Min, HAO Yi-Long, Cheng P. WEN . A High Breakdown Voltage AlGaN/GaN MOSHEMT Using Thermal Oxidized Al-Ti as the Gate Insulator[J]. Chin. Phys. Lett., 2011, 28(10): 087303
Viewed
Full text


Abstract