Chin. Phys. Lett.  2011, Vol. 28 Issue (8): 087201    DOI: 10.1088/0256-307X/28/8/087201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Current Transport in Copper Schottky Contacts to a−Plane/ c−Plane n-Type MoSe2
C. K. Sumesh1**, K. D. Patel2, V. M. Pathak2, R. Srivastav2
1Department of Physics, Faculty of Technology and Engineering, Charotar University of Science and Technology, CHANGA 388421, Gujarat, India
2Department of Physics, Sardar Patel University, Vallabh Vidyanagar 388120, Gujatat, India
Cite this article:   
C. K. Sumesh, K. D. Patel, V. M. Pathak et al  2011 Chin. Phys. Lett. 28 087201
Download: PDF(565KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We identically prepared Cu-nMoSe2 (a−plane) and Cu-nMoSe2 (c−plane) Schottky barrier diodes (SBDs) on the same n-type MoSe2 single crystal. The effective Schottky barrier heights (SBHs) and ideality factors were obtained from the current−voltage-temperature (IVT) characteristics. The barrier height and ideality factor, estimated from the conventional thermionic emission model by assuming a Gaussian barrier distribution, are highly dependent on temperature. A notable deviation from the theoretical Richardson constant value is also observed in the conventional Richardson plot. The decrease in the experimental barrier height ΦB0 and an increase in the ideality factor n with a decrease in temperature have been explained on the basis of barrier height inhomogeneities at the metal−semiconductor interface. It is proven that the presence of a distribution of barrier heights is responsible for the apparent decrease of the zero bias barrier height. The voltage dependence of the standard deviation causes the increase of the ideality factor at low temperatures. The value of the Richardson constant obtained without considering the inhomogeneous barrier heights is much closer than the theoretical value. The Cu-nMoSe2 (a−plane) Schottky diode shows better results in comparison with the nMoSe2 (c-plane) Schottky diode.
Keywords: 72.80.Ga      73.30.+y      73.40.Ei      85.30.Kk      85.30.Hi     
Received: 31 December 2010      Published: 28 July 2011
PACS:  72.80.Ga (Transition-metal compounds)  
  73.30.+y (Surface double layers, Schottky barriers, and work functions)  
  73.40.Ei (Rectification)  
  85.30.Kk (Junction diodes)  
  85.30.Hi (Surface barrier, boundary, and point contact devices)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/8/087201       OR      https://cpl.iphy.ac.cn/Y2011/V28/I8/087201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
C. K. Sumesh
K. D. Patel
V. M. Pathak
R. Srivastav
[1] Pouzet J and Bernede J C 1994 Mater. Chem. and Phys. 36 304
[2] Huang J M and KelleyD F 2000 Chem. Mater. 12 2825
[3] Harpeness R, Gedanken A, Weissb A M and Slifkin M A 2003 J. Mater. Chem. 13 2603
[4] Cohen S R and Rapoport L 1998 Thin Solid Films 324 190
[5] Hussain A and SushilAuluck 2005 Phys. Rev. B 71 55114
[6] Boker Th and Severin R 2001 Phys. Rev. B 64 235305
[7] Sugai S and Ueda T 1990 Phys. Rev. B 26 6554
[8] Rhoderick E H and Williams R H 1998 Metal-Semiconductor Contact (Oxford: Clarendon) chap 1 p 20
[9] Sze S M 1981 Physics of Semiconductor Devices (New York: Wieley) chap 5 p 254
[10] Donoval D et al 1998 Solid State Electron. 42 235
[11] Wagner L F et al 1983 IEEE Trans. Electron Devices Lett. 4 32
[12] Sumesh C K et al 2008 J. Ovonic. Res. 4 61
[13] Sumesh C K et al 2008 Chalcogenide Lett. 5 177
[14] Padovani F A and Stratton R 1966 Solid State Electron. 9 695
[15] Agarwal M K, PatelP D and Gupta S K 1993 J. Cryst. Growth 129 559
[16] Huang Y S 1984 Chin. J. Phys. 22 43
[17] PiotrowskaA et al 1983 Solid State Electron. 26 179
[18] Zhu S Y et al 2004 Solid State Electron. 48 1205
[19] Werner J H and Guttler H H 1991 J. Appl. Phys. 69 1522
[20] Gumus A et al 2002 J. Appl. Phys. 91 245
[21] Sog Y P et al 1986 Solid State Electron. 29 633
[22] Sullivan J P et al 1991 J. Appl. Phys. 70 7403
[23] Chen Y G et al 2003 J. Appl. Phys. Lett. 82 4367
[24] Karatas S et al 2003 Appl. Surf. Sci. 217 250
[25] Monch W 1867 J. Vac. Sci. Technol. B 17 1867
[26] Zhu Z Y et al 2000 Solid State Electron. 44 663
[27] Wittmer M 1990 Phys. Rev. B 42 5249
[28] Aydin M E et al 2007 J. Appl. Phys. 102 43701
[29] Ayyildiz E et al 2005 J. Appl. Surf. Sci. 252 1153
[30] Tung R T 1992 Phys. Rev. B 45 13509
[31] Duman S et al 2007 Appl. Surf. Sci. 253 3899
[32] Gumus A et al 2002 J. Appl. Phys. 91 245
[33] Chand S and Bala S 2005 Appl. Surf. Sci. 252 358
[34] Chand S and Kumar J 1997 J. Appl. Phys. 82 5005
[35] Chin V W L et al 1990 Solid-State Electron. 36 40731
[36] Dobrocka E and Osvald J 1994 Appl. Phys. Lett. 65 575
[37] Horvath J Z et al 1994 J. Mater. Sci. Eng. B 28 429
[38] Schmitsdor R F et al 1997 Surf. Sci. 324 249
[39] Hidayet C et al 2005 Semicond. Sci. Technol. 20 625
[40] Werner J H and Guttler H H 1993 J. Appl. Phys. 73 1315
[41] Freeouf J L et al 1982 Appl. Phys. Lett. 40 634
Related articles from Frontiers Journals
[1] CHANG Jian-Guang,WU Chun-Bo,JI Xiao-Li**,MA Hao-Wen,YAN Feng,SHI Yi,ZHANG Rong. The Leakage Current Improvement of a Ni-Silicided SiGe/Si Junction Using a Si Cap Layer and the PAI Technique[J]. Chin. Phys. Lett., 2012, 29(5): 087201
[2] CHEN Cong, NING Ting-Yin, WANG Can**, ZHOU Yue-Liang, ZHANG Dong-Xiang, WANG Pei, MING Hai, YANG Guo-Zhen . Rectifying Characteristics and Transport Behavior in a Schottky Junction of CaCu 3Ti4O12 and Pt[J]. Chin. Phys. Lett., 2011, 28(8): 087201
[3] WANG Yan, LIU Qi, LV Hang-Bing, LONG Shi-Bing, ZHANG Sen, LI Ying-Tao, LIAN Wen-Tai, YANG Jian-Hong**, LIU Ming . CMOS Compatible Nonvolatile Memory Devices Based on SiO2/Cu/SiO2 Multilayer Films[J]. Chin. Phys. Lett., 2011, 28(7): 087201
[4] ZHAO Geng, CHENG Xiao-Man, **, TIAN Hai-Jun, DU Bo-Qun, LIANG Xiao-Yu . Improved Performance of Pentacene Organic Field-Effect Transistors by Inserting a V2O5 Metal Oxide Layer[J]. Chin. Phys. Lett., 2011, 28(12): 087201
[5] XU Jia-Xiong, YAO Ruo-He*, LIU Yu-Rong . Fabrication of a ZnO:Al/Amorphous-FeSi2 Heterojunction at Room Temperature[J]. Chin. Phys. Lett., 2011, 28(10): 087201
[6] LI Na, YUE Chong-Xing**, LI Xu-Xin . Neutrino-Electron Scattering and the Little Higgs Models[J]. Chin. Phys. Lett., 2011, 28(10): 087201
[7] QIN Yu-Feng, YAN Shi-Shen, KANG Shi-Shou, XIAO Shu-Qin, LI Qiang, DAI Zheng-Kun, SHEN Ting-Ting, DAI You-Yong**, LIU Guo-Lei, CHEN Yan-Xue, MEI Liang-Mo, ZHANG Ze . Electric and Magnetic Field Tunable Rectification and Magnetoresistance in FexGe1−x/Ge Heterojunction Diodes[J]. Chin. Phys. Lett., 2011, 28(10): 087201
[8] HAO Lan-Zhong, **, LIU Yun-Jie, ZHU Jun**, LEI Hua-Wei, LIU Ying-Ying, TANG Zheng-Yu, ZHANG Ying, ZHANG Wan-Li, LI Yan-Rong . Rectifying the Current−Voltage Characteristics of a LiNbO3 Film/GaN Heterojunction[J]. Chin. Phys. Lett., 2011, 28(10): 087201
[9] CAO Dong-Sheng, LU Hai, **, CHEN Dun-Jun, HAN Ping, ZHANG Rong, ZHENG You-Dou . A 1100+V AlGaN/GaN-Based Planar Schottky Barrier Diode without Edge Termination[J]. Chin. Phys. Lett., 2011, 28(1): 087201
[10] CHENG Xiao-Man, , HU Zi-Yang, , WU Ren-Lei, , WANG Zhong-Qiang, , YIN Shou-Gen,. Fabrication and Characterization of C60-Based Organic Schottky Diodes[J]. Chin. Phys. Lett., 2010, 27(1): 087201
[11] AN Xia, FAN Chun-Hui, HUANG Ru, ZHANG Xing. Schottky Barrier Height Modulation of Nickel Germanide Schottky Diodes by the Germanidation-Induced Dopant Segregation Technique[J]. Chin. Phys. Lett., 2009, 26(8): 087201
[12] G. Güler, Ö, . Güllü, S. Karatas, Ö, . F. Bakkaloglu. Electrical Characteristics of Co/n-Si Schottky Barrier Diodes Using I-V and C-V Measurements[J]. Chin. Phys. Lett., 2009, 26(6): 087201
[13] GENG Li, MAGYARI-KOPE Blanka, ZHANG Zhi-Yong, NISHI Yoshio. Fermi Level Unpinning and Schottky Barrier Modification by Ti, Sc and V Incorporation at NiSi2/Si Interface[J]. Chin. Phys. Lett., 2009, 26(3): 087201
[14] HU Zi-Yang, CHENG Xiao-Man, , WU Ren-Lei, WANG Zhong-Qiang, YIN Shou-Gen,. Performance of Organic Field Effect Transistors with Self-Improved Cu/Organic Interfaces[J]. Chin. Phys. Lett., 2009, 26(3): 087201
[15] YUE Song, DU Juan, ZHANG Yuan, ZHANG Yu-Heng. Metal-Insulator Transition in CuIr2(S1-xTex)4[J]. Chin. Phys. Lett., 2009, 26(11): 087201
Viewed
Full text


Abstract