Chin. Phys. Lett.  2011, Vol. 28 Issue (8): 087103    DOI: 10.1088/0256-307X/28/8/087103
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Electronic Properties of Boron Nanotubes under Uniaxial Strain: a DFT study
PAN Li-Jun1,3, JIA Yu1,2**, SUN Qiang1,2, HU Xing1
1School for Physics and Engineering, Zhengzhou University, Zhengzhou 450052
2Laboratory for Clean Energy and Quantum Structures, Zhengzhou University, Zhengzhou 450052
3Department of Physics, Zhengzhou Normal University, Zhengzhou 450044
Cite this article:   
PAN Li-Jun, JIA Yu, SUN Qiang et al  2011 Chin. Phys. Lett. 28 087103
Download: PDF(1608KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Electronic structures of a uniaxially stretched boron nanotube (BNT) are studied by the density functional theory (DFT) and compared with a zigzag single-walled carbon nanotube (CNT). It is verified that modifications of the electronic band structures of CNTs may be classified into three patterns depending on their helicity under the applied strain up to 20%. However, for the BNT, the partial boron bonds will be broken as the applied strain is more than 10%, indicating its poor deformation ability as compated with CNTs. Moreover, the band gap of the BNT keeps or converts to zero regardless of its chirality as the applied strain increases, which is drastically distinct from the CNT. The special behavior of the BNT implies a potential application as an excellent stress sensor.
Keywords: 71.30.+h      73.22.-f      73.63.-b     
Received: 07 December 2010      Published: 28 July 2011
PACS:  71.30.+h (Metal-insulator transitions and other electronic transitions)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/8/087103       OR      https://cpl.iphy.ac.cn/Y2011/V28/I8/087103
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
PAN Li-Jun
JIA Yu
SUN Qiang
HU Xing
[1] Iijima S 1991 Nature 354 56
[2] Hamada N, Sawada S I and Oshiyama A 1992 Phys. Rev. Lett. 68 1579
[3] Saito R, Fujita M, Dresselhaus G and Dresselhaus M S 1992 Phys. Rev. B 46 1804
[4] Mintmire J W, Dunlap B I and White C T 1992 Phys. Rev. Lett. 68 631
[5] Wildöer J W G, Venema L C, Rinzler A G, Smalley R E and Dekker C 1998 Nature 391 59
[6] Odom T W, Huang J L, Kim P and Lieber C M 1998 Nature 391 62
[7] Jiang H, Bu W, Jiang J and Dong J 2004 Eur. Phys. J. B 42 503
[8] Iwanmi K, Goto H, Hirose K and Ono T 2007 Sci. Technol. Adv. Mater. 8 200
[9] Yang L and Han J 2000 Phys. Rev. B 85 154
[10] Yang L, Anantram M P, Han J and Lu J P 1999 Phys. Rev. B 60 13874
[11] Li L J, Nicholas R J, Deacon R S and Shields P A 2004 Phys. Rev. Lett. 93 156104
[12] Cullinan M A and Culpepper M L 2010 Phys. Rev. B 82 115428
[13] Sreekala S, Peng X H, Ajayan P M and Nayak S K 2008 Phys. Rev. B 77 155434
[14] Valavala P K, Banyai D, Seel M and Pati R 2008 Phys. Rev. B 78 235430
[15] Ding J W, Yan X H, Liu C P and Tang N S 2004 Chin. Phys. Lett. 21 704
[16] Bogár F and Mintmire J W 2005 Phys. Rev. B 72 085452
[17] Tang H and Ismail-Beigi S 2007 Phys. Rev. Lett. 99 115501
[18] Miller J 2007 Phys. Today 60 20
[19] Yang X B, Ding Y and Ni J 2008 Phys. Rev. B 77 041402R
[20] Singh A K, Sadrzadeh A and Yakobson B I 2008 Nano Lett. 8 1314
[21] Pan L J, Yang X B, Zhang R Q and Hu X 2010 Int. J. Multiscale Comput. Eng. 8 245
[22] Ordejón P, Artacho E and Soler J M 1996 Phys. Rev. B 53 R10441
[23] Sánchez-Portal D, Ordejón P, Artacho E and Soler J M 1997 Int. J. Quantum Chem. 65 453
[24] Soler J M, Artacho E, Gale J D, Garcia A, Junquera J, Ordejón P and Sánchez-Portal D 2002 J. Phys. Condens. Matter. 14 2745
[25] Bower C, Rosen R and Jin L 1999 Appl. Phys. Lett. 74 3317
[26] Kunstmann J and Quandt A 2005 Chem. Phys. Lett. 402 21
Related articles from Frontiers Journals
[1] AO Bing-Yun**, AI Juan-Juan, GAO Tao**, WANG Xiao-Lin, SHI Peng, CHEN Pi-Heng, YE Xiao-Qiu. Metal-Insulator Transition of Plutonium Hydrides: DFT+U Calculations in the FPLAPW Basis[J]. Chin. Phys. Lett., 2012, 29(1): 087103
[2] WANG Yong-Juan **, CHENG Jie, YUE Xian-Fang . Electronic Properties of the N2C4 Cluster of DNA[J]. Chin. Phys. Lett., 2011, 28(8): 087103
[3] JIA Zhi-Chun, HU Zhen-Peng, ZHAO Ai-Di, LI Zhen-Yu, LI Bin** . Scanning Tunneling Spectroscopy of Metal Phthalocyanines on a Au(111) Surface with a Ni Tip[J]. Chin. Phys. Lett., 2011, 28(7): 087103
[4] WANG Lin-Jun, CAO Gang, TU Tao**, LI Hai-Ou, ZHOU Cheng, HAO Xiao-Jie, GUO Guang-Can, GUO Guo-Ping** . Ground States and Excited States in a Tunable Graphene Quantum Dot[J]. Chin. Phys. Lett., 2011, 28(6): 087103
[5] OUYANG Fang-Ping, **, CHEN Li-Jian, XIAO Jin, ZHANG Hua . Electronic Properties of Bilayer Zigzag Graphene Nanoribbons: First Principles Study[J]. Chin. Phys. Lett., 2011, 28(4): 087103
[6] YANG Cheng, ZHANG Gang, LEE Dae-Young, LI Hua-Min, LIM Young-Dae, YOO Won Jong**, PARK Young-Jun, KIM Jong-Min . Self-Assembled Wire Arrays and ITO Contacts for Silicon Nanowire Solar Cell Applications[J]. Chin. Phys. Lett., 2011, 28(3): 087103
[7] WANG Tao, GUO Qing**, AO Zhi-Min**, LIU Yan, WANG Wen-Bo, SHENG Kuang, YU Bin, . The Tunable Bandgap of AB-Stacked Bilayer Graphene on SiO2 with H2O Molecule Adsorption[J]. Chin. Phys. Lett., 2011, 28(11): 087103
[8] ZHAO Wei**, DING Jian-Wen . Reproduced Giant Localization Length of Two-Side Surface Disordered Nanowires with Long-Range Correlation[J]. Chin. Phys. Lett., 2011, 28(10): 087103
[9] Attia A. Awadalla, Adel H. Phillips** . Thermal Shot Noise through Boundary Roughness of Carbon Nanotube Quantum Dots[J]. Chin. Phys. Lett., 2011, 28(1): 087103
[10] LI Ji-Ling, YANG Guo-Wei, ZHAO Ming-Wen, LIU Xiang-Dong, XIA Yue-Yuan**. Tuning Bandgap of Si-C Heterofullerene-Based Aanotubes by H Adsorption[J]. Chin. Phys. Lett., 2010, 27(9): 087103
[11] FU Di, XIE Dan, ZHANG Chen-Hui, ZHANG Di, NIU Jie-Bin, QIAN He, LIU Li-Tian,. Preparation and Characteristics of Nanoscale Diamond-Like Carbon Films for Resistive Memory Applications[J]. Chin. Phys. Lett., 2010, 27(9): 087103
[12] CHEN Zhi-Dong, ZHANG Jin-Yu, YU Zhi-Ping. Numerical Analysis of Alternating-Current Small-Signal Response in Graphene Nanoribbons[J]. Chin. Phys. Lett., 2010, 27(8): 087103
[13] WAN Lang-Hui, YU Yun-Jin, WANG Bin. Spin Filter of Graphene Nanoribbon Based Structure[J]. Chin. Phys. Lett., 2010, 27(8): 087103
[14] LI Jin, SUN Li-Zhong, ZHONG Jian-Xin. Strain Effects on Electronic Properties of Boron Nitride Nanoribbons[J]. Chin. Phys. Lett., 2010, 27(7): 087103
[15] PAN Li-Jun, CHEN Wei-Guang, ZHANG Rui-Qin, HU Xing, JIA Yu. Influence of High Atomic Hydrogenation on the Electronic Structure of Zigzag Carbon Nanotubes: A First-Principles Study[J]. Chin. Phys. Lett., 2010, 27(7): 087103
Viewed
Full text


Abstract