Chin. Phys. Lett.  2011, Vol. 28 Issue (8): 086602    DOI: 10.1088/0256-307X/28/8/086602
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Elimination of the Coherent Artifact in a Pump-Probe Experiment by Directly Detecting the Background-Free Diffraction Signal
LIU Hui, ZHANG Hang, SI Jin-Hai**, YAN Li-He, CHEN Feng, HOU Xun
Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronics & information Engineering, Xi'an Jiaotong University, Xi'an 710049
Cite this article:   
LIU Hui, ZHANG Hang, SI Jin-Hai et al  2011 Chin. Phys. Lett. 28 086602
Download: PDF(1658KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The influence of the coherent artifact in a semiconductor Ga-doped ZnO film on femtosecond pump-probe measurement is studied. The coherent artifact mixed into the pump-probe signal can be directly inspected by detecting the background-free first-order diffraction signal induced by the interference between the pump and probe pulses. Experimental results show that by varying the polarization angle or adjusting the relative intensity between the pump and probe pulses, the coherent artifact can be eliminated from the pump-probe measurement.
Keywords: 66.30.Fq      82.53.Eb      42.65.Re     
Received: 17 May 2011      Published: 28 July 2011
PACS:  66.30.Fq (Self-diffusion in metals, semimetals, and alloys)  
  82.53.Eb (Pump probe studies of photodissociation)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/8/086602       OR      https://cpl.iphy.ac.cn/Y2011/V28/I8/086602
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Hui
ZHANG Hang
SI Jin-Hai
YAN Li-He
CHEN Feng
HOU Xun
[1] Wundke K, Pötting S, Auxier J, Schülzgen A, Peyghambarian N and Borrelli N F 2000 Appl. Phys. Lett. 76 10
[2] Liu X, Liu W, Yin J, Qu J, Lin Z and Niu H 2011 Chin. Phys. Lett. 28 034202
[3] Li F, Meng F, Feng W, Wang Sh, Tian H and Gong Q 2010 Chin. Phys. Lett. 27 068202
[4] Elim H I, Ji W, Ma G H, Lim K Y, Sow C H and Huan C H A 2004 Appl. Phys. Lett. 85 1799
[5] Tsai T -R, Chang C -F and Gwo S 2007 Appl. Phys. Lett. 90 252111
[6] Gopinath J T, Thoen E R, Koontz E M, Grein M E, Kolodziejski L A, Ippen E P and Donnelly J P 2001 Appl. Phys. Lett. 78 3409
[7] Sanchez S, De Matos C and Pugnet M 2001 Appl. Phys. Lett. 78 3779
[8] Ye H, Wicks G W and Fauchet P M 2000 Appl. Phys. Lett. 77 1185
[9] Sun C -K, Vallée F, Keller S, Bowers J E and DenBaars S P 1997 Appl. Phys. Lett. 70 2004
[10] Lioudakis E, Othonos A, Dimakis E, Iliopouios E and Georgakilas A 2006 Appl. Phys. Lett. 88 121128
[11] Si J and Hirao K 2007 Appl. Phys. Lett. 91 091105
[12] Luo C W, Wang Y T, Chen F W, Shih H C and Kobayashi T 2009 Opt. Express 17 11321
[13] Borri P, Romstad F, Langbein W, Kelly A E, M ørk J and Hvam J M 2000 Opt. Express 7 107
[14] Vandeny Z and Tauc J 1981 Opt. Commun. 39 396
[15] Palfrey S L and Heinz T F 1985 J. Opt. Soc. Am. B 2 674
[16] Sanchez F 1992 J. Opt. Soc. Am. B 9 2196
[17] Cundiff S T 2008 Opt. Express 16 4639
[18] Yan L H, Yue J J, Si J H and Hou X 2008 Opt. Express 16 12069
[19] Dogariu A, Xia T, Hagan D J, Said A A, Van Stryland E W and Bloembergen N 1997 J. Opt. Soc. Am. B 14 796
[20] Qu S, Zhao Ch, Zhao Q, Qiu J, Zhu C and Hirao K 2004 Opt. Lett. 29 2058
[21] Ravn J N 1992 IEEE J. Quantum Electron. 28 315
[22] Kalt H, Lyssenko V G, Renner R and Klingshirn C 1985 J. Opt. Soc. Am. B 2 1188
[23] Divakara Rao K and Sharma K K 1995 J. Opt. Soc. Am. B 12 658
[24] Si J, Qiu J, Zhai J, Shen Y and Hirao K 2002 Appl. Phys. Lett. 80 359
[25] Schneider Th, Wolfframm D, Mitzner R and Reif J 1999 Appl. Phys. B 68 749
[26] Dean D R and Collins R J 1973 J. Appl. Phys. 44 5455
[27] Wang C -R, Luo T and Lu Q -B 2008 Phys. Chem. Chem. Phys. 10 4463
[28] Chudoba C, Nibbering E T J and Elsaesser T 1998 Phys. Rev. Lett. 81 3010
[29] Conrad U, Gdde J, Jhnke V and Matthias E 1999 Appl. Phys. B 68 511
[30] Lebedev M V, Misochko O V, Dekorsy T and Georgiev N 2005 J. Exp. Theor. Phys. 100 272
[31] Liu H, Zhang H, Si J, Zhang J, Yan L, Wei X, Wen X and Hou X 2010 Opt. Commun. 283 5203
[32] Takeda J, Jinnouchi H, Kurita S, Chen Y F and Yao T 2002 Phys. Status Solidi B 229 877
Related articles from Frontiers Journals
[1] SHEN Jian, ZHANG Huai-Wu, LI Yuan-Xun. Terahertz Emission of Ferromagnetic Ni-Fe Thin Films Excited by Ultrafast Laser Pulses[J]. Chin. Phys. Lett., 2012, 29(6): 086602
[2] HAN Ying,**,HOU Lan-Tian,ZHOU Gui-Yao,YUAN Jin-Hui,XIA Chang-Ming,WANG Wei,WANG Chao,HOU Zhi-Yun,. Flat Supercontinuum Generation within the Telecommunication Wave Bands in a Photonic Crystal Fiber with Central Holes[J]. Chin. Phys. Lett., 2012, 29(5): 086602
[3] M. A. Ismail,S. J. Tan,N. S. Shahabuddin,S. W. Harun,**,H. Arof,H. Ahmad. Performance Comparison of Mode-Locked Erbium-Doped Fiber Laser with Nonlinear Polarization Rotation and Saturable Absorber Approaches[J]. Chin. Phys. Lett., 2012, 29(5): 086602
[4] HUANG Xi,QIN Cui,YU Yu,ZHANG Zheng,ZHANG Xin-Liang**. Single- and Dual-Channel DPSK Signal Amplitude Regeneration Based on a Single Semiconductor Optical Amplifier[J]. Chin. Phys. Lett., 2012, 29(5): 086602
[5] WU Wen-Han,HUANG Xi,YU Yu**,ZHANG Xin-Liang. RZ-DQPSK Signal Amplitude Regeneration Using a Semiconductor Optical Amplifier[J]. Chin. Phys. Lett., 2012, 29(4): 086602
[6] KONG Duan-Hua, ZHU Hong-Liang, LIANG Song, QIU Ji-Fang, ZHAO Ling-Juan. Ultrashort Pulse Generation at Quasi-40-GHz by Using a Two-Section Passively Mode-Locked InGaAsP-InP Tensile Strained Quantum-Well Laser[J]. Chin. Phys. Lett., 2012, 29(2): 086602
[7] HAN Ying, **, HOU Lan-Tian, YUAN Jin-Hui, XIA Chang-Ming, ZHOU Gui-Yao,. Ultraviolet Continuum Generation in the Fundamental Mode of Photonic Crystal Fibers[J]. Chin. Phys. Lett., 2012, 29(1): 086602
[8] DONG Jian-Ji**, LUO Bo-Wen, ZHANG Yin, LEI Lei, HUANG De-Xiu, ZHANG Xin-Liang. All-Optical Temporal Differentiator Using a High Resolution Optical Arbitrary Waveform Shaper[J]. Chin. Phys. Lett., 2012, 29(1): 086602
[9] TENG Hao, MA Jing-Long, WANG Zhao-Hua, ZHENG Yi, GE Xu-Lei, ZHANG Wei, WEI Zhi-Yi**, LI Yu-Tong, ZHANG Jie,. A 100-TW Ti:Sapphire Laser System at a Repetition Rate of 0.1 Hz[J]. Chin. Phys. Lett., 2012, 29(1): 086602
[10] YUN Chen-Xia, TENG Hao**, ZHANG Wei, WANG Li-Feng, ZHAN Min-Jie, HE Xin-Kui, WANG Bing-Bing, WEI Zhi-Yi** . Complex Spectra Structure of an Attosecond Pulse Train Driven by Sub-5-fs Laser Pulses[J]. Chin. Phys. Lett., 2011, 28(7): 086602
[11] WEN Jing, JIANG Hong-Bing**, YU Jing, YANG Hong, GONG Qi-Huang** . Broadband Asymmetric Conical Emission via Cascaded Second-Order Nonlinear Polarization during the Propagation of Femtosecond Laser Pulses in a BBO Crystal[J]. Chin. Phys. Lett., 2011, 28(6): 086602
[12] CHEN Ying, QIAN Lie-Jia**, ZHU He-Yuan, FAN Dian-Yuan . Suppression of FM-to-AM Conversion in Broadband Third-Harmonic Generation of Nd:Glass Laser[J]. Chin. Phys. Lett., 2011, 28(4): 086602
[13] PENG Zhi-Min, DING Yan-Jun**, ZHAI Xiao-Dong, YANG Qian-Suo, JIANG Zong-Lin . Spectral Characteristics of CN Radical (B→X) and Its Application in Determination of Rotational and Vibrational Temperatures of Plasma[J]. Chin. Phys. Lett., 2011, 28(4): 086602
[14] LIU Xing, LIU Wei, YIN Jun, QU Jun-Le, LIN Zi-Yang, NIU Han-Ben** . Optimization of Supercontinuum Sources for Ultra-Broadband T-CARS Spectroscopy[J]. Chin. Phys. Lett., 2011, 28(3): 086602
[15] WANG He-Lin, YANG Ai-Jun**, LENG Yu-Xin, WANG Cheng . Modified Raman Response Model and Supercontinuum Generation in Flat Dispersion Photonic Crystal Fiber with Two-Zero Dispersion Wavelengths[J]. Chin. Phys. Lett., 2011, 28(3): 086602
Viewed
Full text


Abstract