CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
A Novel Large Moment Antiferromagnetic Order in K0.8Fe1.6Se2 Superconductor |
BAO Wei1**, HUANG Qing-Zhen2, CHEN Gen-Fu1, M. A. Green2,3, WANG Du-Ming, HE Jun-Bao, QIU Yi-Ming2,3
|
1Department of Physics, Renmin University of China, Beijing 100872
2NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
3Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
|
|
Cite this article: |
BAO Wei, HUANG Qing-Zhen, CHEN Gen-Fu et al 2011 Chin. Phys. Lett. 28 086104 |
|
|
Abstract The discovery of cuprate high TC superconductors has inspired the search for unconventional superconductors in magnetic materials. A successful recipe has been to suppress long−range order in a magnetic parent compound by doping or high pressure to drive the material towards a quantum critical point. We report an exception to this rule in the recently discovered potassium iron selenide. The superconducting composition is identified as the iron vacancy ordered K0.83(2)Fe1.64(1)Se2 with TC above 30 K. A novel large moment 3.31 μB/Fe antiferromagnetic order that conforms to the tetragonal crystal symmetry has an unprecedentedly high ordering temperature TN≈559 K for a bulk superconductor. Staggeringly polarized electronic density of states is thus suspected, which would stimulate further investigation into superconductivity in a strong spin-exchange field under new circumstances.
|
Keywords:
61.05.Fm
78.70.Nx
74.70.-b
|
|
Received: 06 July 2011
Published: 28 July 2011
|
|
PACS: |
61.05.fm
|
(Neutron diffraction)
|
|
78.70.Nx
|
(Neutron inelastic scattering)
|
|
74.70.-b
|
(Superconducting materials other than cuprates)
|
|
|
|
|
[1] Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296
[2] Chen X H et al 2008 Nature 453 761
[3] Chen G F et al 2008 Phys. Rev. Lett. 100 247002
[4] Ren Z A et al 2008 Chin. Phys. Lett. 25 2215
[5] Johnston D C 2010 Adv. Phys. 59 803
[6] Guo J et al 2010 Phys. Rev. B 82 180520(R)
[7] Wang A F et al 2011 Phys. Rev. B 83 060512
[8] Krzton-Maziopa A et al 2011 J. Phys.: Condens. Matter 23 052203
[9] Fang M et al 2011 Europhys. Lett. 94 27009
[10] Wang H et al 2011 Europhys. Lett. 93 47004
[11] Wang Z et al 2011 Phys. Rev. B 83 140505
[12] Zhang Y et al 2011 Nature Mater. 10 273
[13] Zavalij P et al 2011 Phys. Rev. B 83 132509
[14] Mou D et al 2011 Phys. Rev. Lett. 106 107001
[15] Wang X P et al 2011 Europhys. Lett. 93 57001
[16] Mazin I I, Singh D J, Johannes M D and Du M H 2008 Phys. Rev. Lett. 101 057003
[17] Kuroki K et al 2008 Phys. Rev. Lett. 101 087004
[18] Yu W et al 2011 Phys. Rev. Lett. 106 197001
[19] Chen Z G et al 2011 arXiv:1101.0572
[20] Zhang A M et al 2011 arXiv:1101.2168
[21] Shermadini Z et al 2011 Phys. Rev. Lett. 106 117602
[22] Torchetti D A et al 2011 Phys. Rev. B 83 104508
[23] Wang D M, He J B, Xia T L and Chen G F 2011 Phys. Rev. B 83 132502
[24] McQueen T M et al 2009 Phys. Rev. B 79 014522
[25] Bao W et al 2009 Phys. Rev. Lett. 102 247001
[26] Qiu Y et al 2008 Phys. Rev. Lett. 101 257002
[27] de la Cruz C et al 2008 Nature 453 899
[28] Huang Q et al 2008 Phys. Rev. Lett. 101 257003
[29] Li S et al 2009 Phys. Rev. B 80 020504(R)
[30] Yan X W, Gao M, Lu Z Y and Xiang T 2011 Phys. Rev. Lett. 106 087005
[31] Aeppli G et al 1988 Phys. Rev. Lett. 60 615
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|