Chin. Phys. Lett.  2011, Vol. 28 Issue (8): 086103    DOI: 10.1088/0256-307X/28/8/086103
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Hole Mobility of Molecular β-Copper Phthalocyanine Crystal
S. Pengmanayol1,2, T. Osotchan1, M. Suewattana1, N. Ingadapa2, J. Girdpun2
1Department of Physics, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, Thailand
2Faculty of Liberal Art, Rajmangala University of Technology Rattanakosin, Nakornpathom, Thailand
Cite this article:   
S. Pengmanayol, T. Osotchan, M. Suewattana et al  2011 Chin. Phys. Lett. 28 086103
Download: PDF(586KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A Monte Carlo approach is used to estimate hole mobilities in molecular β−copper phthalocyanine (CuPc) crystal for different applied electric field directions. Due to the crystal symmetry, the twelve neighboring molecules in the three-dimensional crystal are selected in the hopping rate calculation. Density functional theory is employed to derive the molecular interaction between the central and neighboring molecules for various applied electric fields. The derived molecular hopping rate is applied to 80 × 80 × 80 lattice sites under periodic boundary conditions. In order to achieve accurate statistics, each calculation includes 6561 particles with more than 10000 hopping steps under an applied electric field of 0.5–3.5 MV/cm. The results indicate that the molecular hopping strongly depends on the molecular orientation and neighboring sites related to the applied electric field direction. The estimated carrier mobility can be described by the percentage occupation in each neighboring site and the obtained hole mobility value is in the same range of the measured values of single crystal CuPc. The calculated mobility for applied electric field along the c crystal axis exhibits the highest values while the mobility along the b axis has the smallest value.
Keywords: 61.43.Bn      64.60.De      68.35.Fx      72.20.Ee     
Received: 14 December 2010      Published: 28 July 2011
PACS:  61.43.Bn (Structural modeling: serial-addition models, computer simulation)  
  64.60.De (Statistical mechanics of model systems (Ising model, Potts model, field-theory models, Monte Carlo techniques, etc.))  
  68.35.Fx (Diffusion; interface formation)  
  72.20.Ee (Mobility edges; hopping transport)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/8/086103       OR      https://cpl.iphy.ac.cn/Y2011/V28/I8/086103
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
S. Pengmanayol
T. Osotchan
M. Suewattana
N. Ingadapa
J. Girdpun
[1] Ikushima A J, Kanno T, Yoshida S and Maeda A 1996 Thin Solid Films 273 35
[2] Kim J Y and Bard A J 2004 Chem. Phys. Lett. 383 11
[3] Guillaud G, Sadoun MA, Maitrot M, Simon J and Bouvet M 1990 Chem. Phys. Lett. 167 503
[4] Tada H, Touda H, Takawa M and Matsushige K 2002 Appl. Phys. Lett. 76 873
[5] Higuchi T, Murayama T, Itoh E and Miyairi K 2006 Thin Solid Films 499 374
[6] Van Slyke S A, Chen C H and Tang C W 1996 Appl. Phys. Lett. 69 2160
[7] Tang C W 1986 Appl. Phys. Lett. 48 183
[8] Bao Z, Lovinger AJ and Dodabalapur A 1996 Appl. Phys. Lett. 69 3066
[9] Achar BN and Lokesh KS 2004 J. Sol. State. Chem. 177 1987
[10] El-Nahass M M, Bahabri F S, AL-Ghamdi A A and Al-Harbi S R 2002 Egypt. J. Sol. 25 307
[11] Bässler H 1995 Phys. Status Solidi B 175 15
[12] Brédas J, Beljonne D, Coropceanu V and Cornil J 2004 Chem. Rev. 104 4971
[13] Sancho-Garcia JC, Horowitz G, Brédas JL and Cornil J 2003 J. Chem. Phys. 119 12563
[14] Olivier Y, Lemaur V, Brédas J L and Cornil J 2006 J. Phys. Chem. A 110 6356
[15] Yasuda T and Tsutsui T 2005 Chem. Phys. Lett. 402 395
[16] Puigdollers J, Voz C, Fonrodona M, Cheylan S, M Stella M, Andreu J, Vetter M and Alcubilla R 2006 J. Non-Cryst. Sol. 352 1778
[17] Salzman R F, Xue J, Rand B P, Alexander A, Thompson M E and Forrest S R 2005 Org. Electron. 6 242
[18] Schauer F, Zhivkov I and Nespurek S 2000 J. Non-Cryst. Sol. 266-269 999
[19] Sun Y, Liu Y, Wang Y, Di C, Wu W and Yu G 2009 Appl. Phys. A 95 777
[20] Al-Zoubi A Y and Hasan O M 2005 J. Phys. Conf. Ser. 13 430
[21] Heilmeier G H and Harrision S E 1963 Phys. Rev. 132 2010
Related articles from Frontiers Journals
[1] WANG Li-Guo**, ZHANG Huai-Wu, TANG Xiao-Li, LI Yuan-Xun, ZHONG Zhi-Yong. Charge Transport and Electrical Properties in Poly(3-hexylthiophene) Polymer Layers[J]. Chin. Phys. Lett., 2012, 29(1): 086103
[2] Sardar Sikandar Hayat**, I. Ahmad, M. Arshad Choudhry . Diffusion of Six-Atom Cu Islands on Cu(111) and Ag(111)[J]. Chin. Phys. Lett., 2011, 28(5): 086103
[3] DENG Hong-Yan, HAO Wei-Chang, XU Huai-Zhe** . A Transition Phase in the Transformation from α-;, β- and ϵ- to δ-Bismuth Oxide[J]. Chin. Phys. Lett., 2011, 28(5): 086103
[4] WEN Zhang-Bin, HOU Zhi-Lin, FU Xiu-Jun** . Monte Carlo Simulation of the Potts Model on a Dodecagonal Quasiperiodic Structure[J]. Chin. Phys. Lett., 2011, 28(4): 086103
[5] GAO Xing-Xin, JIA Yan-Hui, LI Gong-Ping**, CHO Seong-Jin, KIM Hee . Diffusion and Interface Reaction of Cu/Si (100) Films Prepared by Cluster Beam Deposition[J]. Chin. Phys. Lett., 2011, 28(3): 086103
[6] CAO Wen-Qiang, , LU Ming-Ming, WEN Bo, CHEN Yuan-Lu, LI Hong-Bo, YUAN Jie**, CAO Mao-Sheng** . MWCNTs/SiO2 Composite System: Carrier Transmission, Twin-Percolation and Dielectric Properties[J]. Chin. Phys. Lett., 2011, 28(10): 086103
[7] LI Yong-Sheng**, CHENG Xiao-Ling, XU Feng, DU Yu-Lei . Interdiffusion Flux and Interface Movement in Metallic Multilayers[J]. Chin. Phys. Lett., 2011, 28(10): 086103
[8] QUAN Wei-Long, LI Hong-Xuan, ZHAO Fei, JI Li, DU Wen, ZHOU Hui-Di, CHEN Jian-Min. Molecular Dynamical Simulations on a-C:H Film Growth from C and H Atomic Flux: Effect of Incident Energy[J]. Chin. Phys. Lett., 2010, 27(8): 086103
[9] QIAO Xian-Feng, CHEN Jiang-Shan, MA Dong-Ge. Comparative Study on Hole Transport in N,N'-bis(naphthalen-1-yl)-N,N'- bis(pheny) Benzidine and 4,4',4''-tri(N-carbazolyl)triphenylamine[J]. Chin. Phys. Lett., 2010, 27(8): 086103
[10] WANG Meng-Xiong, CAI Jian-Wei, XIE Zhi-Yuan, CHEN Qiao-Ni, ZHAO Hui-Hai, WEI Zhong-Chao. Investigation of the Potts Model on Triangular Lattices by the Second Renormalization of Tensor Network States[J]. Chin. Phys. Lett., 2010, 27(7): 086103
[11] QUAN Wei-Long, LI Hong-Xuan, ZHAO Fei, JI Li, DU Wen, ZHOU Hui-Di, CHEN Jian-Min. Molecular Dynamic Simulation on Graphitization and Dehydrogenization of Hydrogenated Carbon Films in Vacuum[J]. Chin. Phys. Lett., 2010, 27(7): 086103
[12] HOU Zhao-Yang, LIU Li-Xia, LIU Rang-Su, TIAN Ze-An. Tracing Nucleation and Growth on Atomic Level in Amorphous Sodium by Molecular Dynamics Simulation[J]. Chin. Phys. Lett., 2010, 27(3): 086103
[13] LIU Shu-Jian, YU Qing-Xuan, WANG Jian, LIAO Yuan, LI Xiao-Guang. Photoluminescence of a ZnO/GaN Heterostructure Interface[J]. Chin. Phys. Lett., 2009, 26(7): 086103
[14] YANG Bin, LAI Wen-Sheng. Molecular Dynamics Study of Stability of Solid Solutions and Amorphous Phase in the Cu-Al System[J]. Chin. Phys. Lett., 2009, 26(6): 086103
[15] HUANG Wei-Qi, LÜ, Quan, XU Li, ZHANG Rong-Tao, WANG Hai-Xu, JIN Feng. Various Trap States at SiGe-SiO2 Interface Formed by a Pulsed Laser[J]. Chin. Phys. Lett., 2009, 26(2): 086103
Viewed
Full text


Abstract