Chin. Phys. Lett.  2011, Vol. 28 Issue (8): 084708    DOI: 10.1088/0256-307X/28/8/084708
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Direct Numerical Simulation of Particle Migration in a Simple Shear Flow
LV Hong, TANG Sheng-Li**, ZHOU Wen-Ping
Department of Power Engineering, Chongqing University, Chongqing 400044
Cite this article:   
LV Hong, TANG Sheng-Li, ZHOU Wen-Ping 2011 Chin. Phys. Lett. 28 084708
Download: PDF(3282KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Motion of a rectangular particle in a two-dimensional vertical shear flow of Newtonian fluid and viscoelastic fluid with different parameters is studied using the finite element arbitrary Lagrangian–Eulerian domain method. The results show that the centerline of the channel is a stable equilibrium position for the neutrally buoyant rectangular particle in a vertical shear flow. Inertia causes the particle to migrate towards the centerline of the channel. In addition, a critical elasticity number exists. When the elasticity number is below the critical value, the rectangular particle migrates to the centerline; otherwise the centerline of the channel is apparently no longer a global attractor of trajectories of the particle.
Keywords: 47.55.Kf      47.11.Fg     
Received: 03 September 2010      Published: 28 July 2011
PACS:  47.55.Kf (Particle-laden flows)  
  47.11.Fg (Finite element methods)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/8/084708       OR      https://cpl.iphy.ac.cn/Y2011/V28/I8/084708
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LV Hong
TANG Sheng-Li
ZHOU Wen-Ping
[1] Skora J, Kordecka A, Wlosiak P, Madeja Z and Korohoda W 2009 Eur. J. Cell Biol. 88 531
[2] Kim Y W and Yoo J Y 2009 Biosens. Bioelectron. 24 3677
[3] Segré G and Silberberg A 1961 Nature 189 209
[4] Ho B P and Leal L G 1974 J. Fluid Mech. 65 365
[5] Cherukat P, Mclaughlin J B and Graham A L 1994 Int. J. Multiphase Flow 20 339
[6] Krishnan G P and Leighton D T 1995 Phys. Fluid 7 2538
[7] Feng J, Hu H H and Joseph D D 1994 J. Fluid Mech. 277 271
[8] Gauthier F, Goldsmith H L and Mason S G 1971 Rheol. Acta 10 344
[9] Bartram E, Goldsmith H L and Mason S G 1975 Rheol. Acta 14 776
[10] Huang P Y, Feng J, Hu H H and Joseph D D 1997 J. Fluid Mech. 343 73
[11] D'Avino G, Tuccillo T, Maffettone P L, Greco F and Hulsen M A 2010 Comput. Fluids 39 709
[12] D'Avino G, Maffettone P L, Greco F and Hulsen M A 2010 J. Non-Newton. Fluid Mech. 165 466
[13] D'Avino G, Hulsen M A, Snijkers F, Vermant J, Greco F and Maffettone P L 2008 J. Rheol. 52 1331
[14] D'Avino G, Cicale G, Hulsen M A, Greco F, Maffettone P L 2009 J. Non-Newton. Fluid Mech. 157 101
[15] Mortensen P H, Andersson H I, Gillissen J J J and Boersma B J 2008 Int. J. Multiphase Flow 34 678
[16] Jayageeth C, Sharma V I and Singh A 2009 Int. J. Multiphase Flow 35 261
[17] Feng Z G and Michaelides E E 2003 Int. J. Multiphase Flow 29 943
[18] Hu H H, Patankar N A and Zhu M Y 2001 J. Comput. Phys. 169 427
Related articles from Frontiers Journals
[1] LI Jing, LIU Zhao-Hui, WANG Han-Feng, CHEN Sheng, LIU Ya-Ming, HAN Hai-Feng, ZHENG Chu-Guang. Turbulence Modulations in the Boundary Layer of a Horizontal Particle-Laden Channel Flow[J]. Chin. Phys. Lett., 2010, 27(6): 084708
[2] LIU Ya-Ming, LIU Zhao-Hui, HAN Hai-Feng, LI Jing, WANG Han-Feng, ZHENGChu-Guang. Scalar Statistics along Inertial Particle Trajectory in Isotropic Turbulence[J]. Chin. Phys. Lett., 2009, 26(6): 084708
[3] M. CHANDRASEKAR, S. SURESH. Determination of Heat Transport Mechanism in Aqueous Nanofluids Using Regime Diagram[J]. Chin. Phys. Lett., 2009, 26(12): 084708
[4] TANG Yi, PEI Jing, PAN Long-Fa, NI Yi, HU Hua, ZHANG Bu-Qing. Experiments of Multi-Level Read-Only Recording Using Readout Signal Wave-Shape Modulation[J]. Chin. Phys. Lett., 2008, 25(5): 084708
[5] KU Xiao-Ke, LIN Jian-Zhong,. Orientational Distribution of Fibres in Sheared Fibre Suspensions[J]. Chin. Phys. Lett., 2007, 24(6): 084708
[6] LI Xu-Feng, WU Shi-Fa. Influence of Length of Opposing bi-Au Cone-Tips and Different Environment on Field Enhancement in Feed Gap[J]. Chin. Phys. Lett., 2007, 24(10): 084708
[7] SONG Jie, PEI Jing, XU Duan-Yi, XIONG Jian-Ping, CHEN Ken, PAN Long-Fa. Pit Depth and Width Modulation Multilevel Run-Length Limited Read-Only Optical Storage[J]. Chin. Phys. Lett., 2006, 23(6): 084708
[8] LIN Jian-Zhong, WANG Ye-Long, James A. Olsen. Sedimentation of Rigid Cylindrical Particles with Mechanical Contacts[J]. Chin. Phys. Lett., 2005, 22(3): 084708
[9] LIN Jian-Zhong, SUN Ke, LIN Jiang. Distribution of Orientations in Fibre Suspension Flowing in a Turbulent Boundary Layer[J]. Chin. Phys. Lett., 2005, 22(12): 084708
[10] TIAN Ju-Ping, YAO Kai-Lun,. Viscous Fingering in Correlated Site-Bond Square Lattice[J]. Chin. Phys. Lett., 2001, 18(4): 084708
[11] TIAN Ju-Ping, YAO Kai-Lun,. Viscous Fingering Patterns and Fractal Nature in Two-Dimension Porous Media[J]. Chin. Phys. Lett., 2001, 18(10): 084708
[12] YU Hui-dan, ZHAO Kai-hua. A New Lattice Boltzmann Model for Two-Phase Fluid[J]. Chin. Phys. Lett., 1999, 16(4): 084708
[13] TIAN Ju-ping, YAO Kai-lun,. Computer Simulation of Radial Viscous Fingering in Two-Dimension Porous Media[J]. Chin. Phys. Lett., 1998, 15(8): 084708
[14] TIAN Ju-ping, YAO Kai-lun,. Fractal Nature of Viscous Fingering in Random Sierpinski Carpet[J]. Chin. Phys. Lett., 1998, 15(7): 084708
[15] TIAN Juping, YU Boming, YAO Kailun*. Fractal Nature of Capillary and Viscous Fingering in Two-Dimensional Porous Media[J]. Chin. Phys. Lett., 1995, 12(12): 084708
Viewed
Full text


Abstract