Chin. Phys. Lett.  2011, Vol. 28 Issue (8): 084707    DOI: 10.1088/0256-307X/28/8/084707
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Peristaltic Motion of Power-Law Fluid with Heat and Mass Transfer
T. Hayat1,2**, S. Hina1, Awatif A. Hendi2
1Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000, Pakistan
2Department of Physics, Faculty of Science, King Saud University, P.O. Box 1846, Riyadh 11328, Saudi Arabia
Cite this article:   
T. Hayat, S. Hina, Awatif A. Hendi 2011 Chin. Phys. Lett. 28 084707
Download: PDF(556KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The effects of wall properties and heat and mass transfer on the peristalsis in a power-law fluid are investigated. The solutions for the stream function, temperature, concentration and heat transfer coefficient are obtained. The axial velocity, temperature and mass concentration are studied for different emerging parameters.
Keywords: 47.27.Nd      44.10.+i      47.63.Mf.     
Received: 05 January 2011      Published: 28 July 2011
PACS:  47.27.nd (Channel flow)  
  44.10.+i (Heat conduction)  
  47.63.Mf.  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/8/084707       OR      https://cpl.iphy.ac.cn/Y2011/V28/I8/084707
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
T. Hayat
S. Hina
Awatif A. Hendi
[1] Shapiro H, Jaffrin M Y and Weinberg S L 1969 J. Fluid Mech. 37 799
[2] Fung Y C and Yih C S 1968 Trans. ASME J. Appl. Mech. 33 669
[3] Abd Elnaby M A and Haroun M H 2008 Commun. Nonlinear Sci. Numer. Simul. 13 752
[4] Ali N, Hayat T and Asghar S 2009 Chaos Solitons & Fractals 39 407
[5] Hayat T, Javed M and Asghar S 2008 Phys. Lett. A 372 5026
[6] Hayat T, Javed M and Ali N 2008 Trans. Porous Med. 74 259
[7] Radhakrishnamacharya G and Srinivasulu C 2007 C. R. Mecanique 335 369
[8] Kothandapani M and Srinivas S 2008 Phys. Lett. A 372 4586
[9] Srinivas S, Gayathri R and Kothandapani M 2009 Comput. Phys. Commun. 180 2115
[10] Mekheimer Kh S and Abd elmaboud Y 2008 Phys. Lett. A 372 1657
[11] Hayat T, Hina S and Ali N 2010 Numer. Methods PDEs 26 1099
[12] Ogulu A 2006 Int. Comm. Heat Mass Transfer 33 790
[13] Srinivas S and Kothandapani M 2009 Appl. Math. Comput. 213 197
[14] Hayat T and Hina S 2010 Nonlinear Analysis: Real World Applications 11 3155
[15] Mekheimer Kh S, Husseny S Z and Abd Elmaboud Y 2010 Numer. Methods. PDEs 26 747
[16] Nadeem S, Akbar N S, Bibi N and Ashiq S 2010 Commun. Nonlinear Sci. Numer. Simul. 15 2916
[17] Vasudev C, Rao U R, Reddy M V S and Rao G P 2010 Eur. J. Sci. Res. 44 79
[18] Srinivas S, Gayathri R and Kothandapani M 2011 Commun. Nonliear Sci. Numer. Simul. 16 1845
[19] Hayat T and Hina S 2011 Int. J. Numer. Methods Fluids
Related articles from Frontiers Journals
[1] YANG Wei, ZHOU Kun. A New Method of Simulating Fiber Suspensions and Applications to Channel Flows[J]. Chin. Phys. Lett., 2012, 29(6): 084707
[2] YANG Zi-Xuan,CUI Gui-Xiang**,XU Chun-Xiao,ZHANG Zhao-Shun,SHAO Liang. Correlation between Temperature and Velocity Fluctuations in the Near-Wall Region of Rotating Turbulent Channel Flow[J]. Chin. Phys. Lett., 2012, 29(5): 084707
[3] LIU Jing,FENG Shi-Wei**,ZHANG Guang-Chen,ZHU Hui,GUO Chun-Sheng,QIAO Yan-Bin,LI Jing-Wan. A Novel Method for Measuring the Temperature in the Active Region of Semiconductor Modules[J]. Chin. Phys. Lett., 2012, 29(4): 084707
[4] ZHANG Hui-Qiang, LU Hao, WANG Bing**, WANG Xi-Lin . Experimental Investigation of Flow Drag and Turbulence Intensity of a Channel Flow with Rough Walls[J]. Chin. Phys. Lett., 2011, 28(8): 084707
[5] CHEN Liang**, ZHANG Wan-Rong, XIE Hong-Yun, JIN Dong-Yue, DING Chun-Bao, FU Qiang, WANG Ren-Qing, XIAO Ying, ZHAO Xin . Restabilizing Mechanisms after the Onset of Thermal Instability in Bipolar Transistors[J]. Chin. Phys. Lett., 2011, 28(7): 084707
[6] XU Wen, CHEN Wei-Zhong**, TAO Feng, . Thermal Rectification in Graded Nonlinear Transmission Lines[J]. Chin. Phys. Lett., 2011, 28(12): 084707
[7] LIU Qing-Nian, MENG Song-He, JIANG Chi-Ping, SONG Fan. Critical Biot's number for Determination of the Sensitivity of Spherical Ceramics to Thermal Shock[J]. Chin. Phys. Lett., 2010, 27(8): 084707
[8] GONG Yue-Feng, SONG Zhi-Tang, LING Yun, LIU Yan, LI Yi-Jin, FENG Song-Lin. Three-Dimensional Finite Element Simulations for the Thermal Characteristics of PCRAMs with Different Buffer Layer Materials[J]. Chin. Phys. Lett., 2010, 27(8): 084707
[9] XIN Xiao-Feng, CHEN Cheng, WANG Bo-Fu, MA Dong-Jun, SUN De-Jun. Local Heating Effect of Flow Past a Circular Cylinder[J]. Chin. Phys. Lett., 2010, 27(4): 084707
[10] CHEN Zhao-Jiang, ZHANG Shu-Yi. Thermal Depth Profiling Reconstruction by Multilayer Thermal Quadrupole Modeling and Particle Swarm Optimization[J]. Chin. Phys. Lett., 2010, 27(2): 084707
[11] LUO Jian-Ping, LU Zhi-Ming, USHIJIMA Tatsuo, KITOH Osami, LIU Yu-Lu,. Lagrangian Structure Function's Scaling Exponents in Turbulent Channel Flow[J]. Chin. Phys. Lett., 2010, 27(2): 084707
[12] LI Hai-Bin, NIE Qing-Miao, XIN Xiao-Tian. Asymmetric Heat Conduction in One-Dimensional Hard-Point Model with Mass Gradient[J]. Chin. Phys. Lett., 2009, 26(7): 084707
[13] GONG Yue-Feng, SONG Zhi-Tang, LING Yun, LIU Yan, FENG Song-Lin. Simulation of SET Operation in Phase-Change Random Access Memories with Heater Addition and Ring-Type Contactor for Low-Power Consumption by Finite Element Modeling[J]. Chin. Phys. Lett., 2009, 26(11): 084707
[14] LI Yu-Hua, QU Wei, FENG Jian-Chao. Temperature Dependence of Thermal Conductivity of Nanofluids[J]. Chin. Phys. Lett., 2008, 25(9): 084707
[15] ZHANG Xing, TAKAHASHI Koji, FUJII Motoo. Charge and Heat Transport in Polycrystalline Metallic Nanostructures[J]. Chin. Phys. Lett., 2008, 25(9): 084707
Viewed
Full text


Abstract