Chin. Phys. Lett.  2011, Vol. 28 Issue (8): 084706    DOI: 10.1088/0256-307X/28/8/084706
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
A Low Voltage Driven Digital-Droplet-Transporting-Chip by Electrostatic Force
GAO An-Ran1,2, LIU Xiang1,2, GAO Xiu-Li1, LI Tie1**, GAO Hua-Min1, ZHOU Ping1, WANG Yue-Lin1
1State Key Laboratories of Transducer Technology, National Key Laboratory of Microsystem Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050
2Graduate School of Chinese Academy of Sciences, Beijing 100049
Cite this article:   
GAO An-Ran, LIU Xiang, GAO Xiu-Li et al  2011 Chin. Phys. Lett. 28 084706
Download: PDF(926KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A low-voltage-driven digital-droplet-transporting chip with an open structure is designed, fabricated and characterized. The digital microfluidic chip is fabricated by the silicon planar process. Using only a single electrode panel, the droplet on the chip can be manipulated by electrostatic force under a dc driving voltage. The actuation principle is proposed and verified by the experiment. The experimental results show that the minimum driving voltage decreases as the thickness of the dielectric layer decreases. The driving voltage for a 3 µL deionized (DI) water droplet is reduced to 15 V in air and 13.5 V in oil by employing a thin dielectric layer of 600 nm with a high dielectric constant and a coating hydrophobic layer on the top. The DI water droplets are also demonstrated to be transported in two dimensions smoothly in a programmable manner, and the maximum transport speed reaches 96 mm/s. The droplets of normal saline, a solution of 0.9 wt% NaCl, are also successfully manipulated on the chip.
Keywords: 47.55.D-      47.65.-d      85.85.+j     
Received: 18 April 2011      Published: 28 July 2011
PACS:  47.55.D- (Drops and bubbles)  
  47.65.-d (Magnetohydrodynamics and electrohydrodynamics)  
  85.85.+j (Micro- and nano-electromechanical systems (MEMS/NEMS) and devices)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/8/084706       OR      https://cpl.iphy.ac.cn/Y2011/V28/I8/084706
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GAO An-Ran
LIU Xiang
GAO Xiu-Li
LI Tie
GAO Hua-Min
ZHOU Ping
WANG Yue-Lin
[1] Haeberle S and Zengerle R 2007 Lab Chip 7 1094
[2] Luo J K, Fu Y Q, Li Y, Du X Y, Flewitt A J, Walton A J and Milne W I 2009 J. Micromech. Microeng. 19 054001
[3] Pollack M G, Shenderov A D and Fair R B 2002 Lab Chip 2 96
[4] Cho S K, Moon H and Kim C J 2003 J. Microelectromech. Syst. 12 70
[5] Washizu M 1998 IEEE Trans. Ind. Appl. 34 732
[6] Kawamoto H and Hayashi S 2006 J. Phys. D: Appl. Phys. 39 418
[7] Lebrasseur E, Al-Haq M I, Choi W K, Hirano M, Tsuchiya H, Torii T, Higuchi T, Yamazaki H and Shinohara E 2007 Sensors Actuators A 136 358
[8] Fair R B, Khlystov A, Tailor T D, Ivanov V, Evans R D, Griffin P B, Vijay S, Pamula V K, Pollack M G and Zhou J 2007 IEEE Design Test Computers 24 10
[9] Seyrat E and Hayes R A 2001 J. Appl. Phys. 90 1383
[10] Fan S K, Yang H, Wang T T and Hsu W 2007 Lab Chip 7 1330
[11] Moon H, Cho S K, Garrell R L and Kim C J 2002 J. Appl. Phys. 92 4080
Related articles from Frontiers Journals
[1] ZHAO An-Di,ZHENG Yong-Jun,YU Xiao-Mei**. Imaging and Characteristics of a Bimaterial Microcantilever FPA Fabricated using Bulk Silicon Processes[J]. Chin. Phys. Lett., 2012, 29(5): 084706
[2] Chandaneswar Midya*. Exact Solutions of Chemically Reactive Solute Distribution in MHD Boundary Layer Flow over a Shrinking Surface[J]. Chin. Phys. Lett., 2012, 29(1): 084706
[3] Krishnendu Bhattacharyya**, G. C. Layek . MHD Boundary Layer Flow of Dilatant Fluid in a Divergent Channel with Suction or Blowing[J]. Chin. Phys. Lett., 2011, 28(8): 084706
[4] T. Hayat, M. Mustafa**, S. Obaidat . Simultaneous Effects of MHD and Thermal Radiation on the Mixed Convection Stagnation-Point Flow of a Power-Law Fluid[J]. Chin. Phys. Lett., 2011, 28(7): 084706
[5] LI Yi-Gui**, SUN Jian, YANG Chun-Sheng, LIU Jing-Quan, SUGIYAMA Susumu, TANAKA Katsuhiko . Fabrication and Characterization of a Lead Zirconate Titanate Micro Energy Harvester Based on Eutectic Bonding[J]. Chin. Phys. Lett., 2011, 28(6): 084706
[6] Krishnendu Bhattacharyya**, Swati Mukhopadhyay, G. C. Layek . MHD Boundary Layer Slip Flow and Heat Transfer over a Flat Plate[J]. Chin. Phys. Lett., 2011, 28(2): 084706
[7] A. H. Ayyad**, F. Takrori . Can Heavier Liquid Float on Top of a Lighter One?[J]. Chin. Phys. Lett., 2011, 28(1): 084706
[8] SUN Xiao-Hui, CHEN Zhi-Hua**, ZHANG Huan-Hao . MHD Control of Oblique Detonation Waves[J]. Chin. Phys. Lett., 2011, 28(1): 084706
[9] TAN Zhen-Xin, XUE Chen-Yang, HOU Ting-Ting, LIU Jun, ZHANG Bin-Zhen, ZHANG Wen-Dong. Temperature Effects of Piezoresistance Coefficient[J]. Chin. Phys. Lett., 2010, 27(8): 084706
[10] SHEN Chang-Le, XIE Wen-Jun, WEI Bing-Bo. Non-Axisymmetric Oscillation of Acoustically Levitated Water Drops at Specific Frequencies[J]. Chin. Phys. Lett., 2010, 27(7): 084706
[11] GUAN Zhi-Qiang, LUO Gang, MONTELIUS Lars, XU Hong-Xing,. Electromechanical Behavior of Interdigitated SiO2 Cantilever Arrays[J]. Chin. Phys. Lett., 2010, 27(2): 084706
[12] CAO Li-Xin, ZHANG Feng-Xin, ZHU Yin-Fang, YANG Jin-Ling,. Ultrasensitive Detection of Infrared Photon Using Microcantilever: Theoretical Analysis[J]. Chin. Phys. Lett., 2010, 27(10): 084706
[13] KUO Ju-Nan, CHEN Wei-Lun, JYWE Wen-Yuh. Surface Micromachined Adjustable Micro-Concave Mirror for Bio-Detection Applications[J]. Chin. Phys. Lett., 2009, 26(8): 084706
[14] TAO Yu-Jia, HUAI Xiu-Lan, LI Zhi-Gang. Numerical Simulation of Vapor Bubble Growth and Heat Transfer in a Thin Liquid Film[J]. Chin. Phys. Lett., 2009, 26(7): 084706
[15] HONG Zhen-Yu, XIE Wen-Jun, WEI Bing-Bo. Ultrasonic Vibration Suspends Large Pendant Drops[J]. Chin. Phys. Lett., 2009, 26(5): 084706
Viewed
Full text


Abstract