Chin. Phys. Lett.  2011, Vol. 28 Issue (8): 084703    DOI: 10.1088/0256-307X/28/8/084703
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Experimental Investigation of Flow Drag and Turbulence Intensity of a Channel Flow with Rough Walls
ZHANG Hui-Qiang, LU Hao, WANG Bing**, WANG Xi-Lin
School of Aerospace, Tsinghua University, Beijing 100084
Cite this article:   
ZHANG Hui-Qiang, LU Hao, WANG Bing et al  2011 Chin. Phys. Lett. 28 084703
Download: PDF(985KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Turbulent flow over rough walls is investigated through acoustic doppler velocimeter measurements. Smooth rods with a diameter of 6 mm are used as roughness elements. The rods are arranged at the channel bottom wall in three ways: longitudinally (along the flow direction); transversely (orthogonally to flow direction); and mesh-shaped (in a staggered mesh). The transverse roughness elements produce higher disturbance and flow drag than longitudinal roughness. Both turbulence intensity and flow drag for mesh-shaped roughness are not significantly different from those of transverse roughness, indicating that the transverse roughness elements mainly affect turbulence characteristics. Both turbulence intensity and flow drag are greatest for transverse rough walls at w/k=7; likewise, both increase with decreasing w/k for longitudinal rough walls. Compared with channel flow over a smooth wall, the turbulence intensity increases considerably, while the flow drag only increases slightly when w/k is small for the three arrangements. This is beneficial for enhancing heat transfer and mixing in channel flows with relatively small flow resistance.
Keywords: 47.27.-i      47.27.Nd      47.85.L-     
Received: 26 April 2011      Published: 28 July 2011
PACS:  47.27.-i (Turbulent flows)  
  47.27.nd (Channel flow)  
  47.85.L- (Flow control)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/8/084703       OR      https://cpl.iphy.ac.cn/Y2011/V28/I8/084703
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Hui-Qiang
LU Hao
WANG Bing
WANG Xi-Lin
[1] Ashrafian A et al 2004 Int. J. Heat Fluid Flow 25 373
[2] Krogstad P A et al 2005 J. Fluid Mech. 530 327
[3] Orlandi P, Leonardi S and Antonia R A 2006 J. Fluid Mech. 561 279
[4] Djenidi L, Antonia R A, Amielh M and Anselmet F 2008 Exp. Fluids 44 37
[5] Lee J H, Lee S H, Kin K Y and Sung H J 2009 Int. J. Heat Fluid Flow 30 1087
[6] Yang F, Zhang H Q and Wang X L 2008 Chin. Phys. Lett. 25 191
[7] Wang S, Yang S H, Wu X, Zhao C M and Zhu Q H 2010 Chin. Phys. Lett. 27 084202
[8] Leonardi S, Orlandi P, Smalley R J, Djenidi L and Antonia R A 2003 J. Fluid Mech. 491 229
Related articles from Frontiers Journals
[1] YANG Wei, ZHOU Kun. A New Method of Simulating Fiber Suspensions and Applications to Channel Flows[J]. Chin. Phys. Lett., 2012, 29(6): 084703
[2] YANG Zi-Xuan,CUI Gui-Xiang**,XU Chun-Xiao,ZHANG Zhao-Shun,SHAO Liang. Correlation between Temperature and Velocity Fluctuations in the Near-Wall Region of Rotating Turbulent Channel Flow[J]. Chin. Phys. Lett., 2012, 29(5): 084703
[3] T. Hayat, **, S. Hina, Awatif A. Hendi . Peristaltic Motion of Power-Law Fluid with Heat and Mass Transfer[J]. Chin. Phys. Lett., 2011, 28(8): 084703
[4] ZHANG Hui, FAN Bao-Chun**, CHEN Zhi-Hua . In-depth Study on Cylinder Wake Controlled by Lorentz Force[J]. Chin. Phys. Lett., 2011, 28(12): 084703
[5] XIN Xiao-Feng, CHEN Cheng, WANG Bo-Fu, MA Dong-Jun, SUN De-Jun. Local Heating Effect of Flow Past a Circular Cylinder[J]. Chin. Phys. Lett., 2010, 27(4): 084703
[6] LUO Jian-Ping, LU Zhi-Ming, USHIJIMA Tatsuo, KITOH Osami, LIU Yu-Lu,. Lagrangian Structure Function's Scaling Exponents in Turbulent Channel Flow[J]. Chin. Phys. Lett., 2010, 27(2): 084703
[7] MI Jian-Chun, R. A. Antonia. Key Factors in Determining the Magnitude of Vorticity in Turbulent Plane Wakes[J]. Chin. Phys. Lett., 2010, 27(2): 084703
[8] JIANG Mi, MA Ping. Vortex Turbulence due to the Interplay of Filament Tension and Rotational Anisotropy[J]. Chin. Phys. Lett., 2009, 26(7): 084703
[9] LI Zhang-Guo, LIU Qiu-Sheng, LIU Rong, HU Wei, DENG Xin-Yu. Influence of Rayleigh-Taylor Instability on Liquid Propellant Reorientation in a Low-Gravity Environment[J]. Chin. Phys. Lett., 2009, 26(11): 084703
[10] CAO Yu-Hui, PEI Jie, CHEN Jun, SHE Zhen-Su,. Compressibility Effects in Turbulent Boundary Layers[J]. Chin. Phys. Lett., 2008, 25(9): 084703
[11] DUAN Li, KANG Qi, HU Wen-Rui. Experimental Study on Liquid Free Surface in Buoyant-Thermocapillary Convection[J]. Chin. Phys. Lett., 2008, 25(4): 084703
[12] FENG Shi-De, DONG Ping, ZHONG Lin-Hao. A Conceptual Model of Somali Jet Based on the Biot--Savart Law[J]. Chin. Phys. Lett., 2008, 25(12): 084703
[13] RAO Yong, NI Yu-Shan, LIU Chao-Feng. Multi-Bifurcation Effect of Blood Flow by Lattice Boltzmann Method[J]. Chin. Phys. Lett., 2008, 25(11): 084703
[14] YANG Fan, ZHANG Hui-Qiang, CHAN Cheong-Ki, WANG Xi-Lin. Large Eddy Simulation of Turbulent Channel Flow with 3D Roughness Using a Roughness Element Model[J]. Chin. Phys. Lett., 2008, 25(1): 084703
[15] TENG Hong-Hui, JIANG Zong-Lin. Analytical Interaction of the Acoustic Wave and Turbulent Flame[J]. Chin. Phys. Lett., 2007, 24(2): 084703
Viewed
Full text


Abstract