FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Dual Solutions in Unsteady Stagnation-Point Flow over a Shrinking Sheet |
Krishnendu Bhattacharyya**
|
Department of Mathematics, The University of Burdwan, Burdwan-713104, West Bengal, India
|
|
Cite this article: |
Krishnendu Bhattacharyya 2011 Chin. Phys. Lett. 28 084702 |
|
|
Abstract An analysis is made to study the dual nature of solution of unsteady stagnation-point flow due to a shrinking sheet. Using similarity transformations, the governing boundary layer equations are transformed into the self-similar nonlinear ordinary differential equations. The transformed equations are solved numerically using a very efficient shooting method. The study reveals the conditions of existence, uniqueness and non-existence of unsteady similarity solution. The dual solutions for velocity distribution exist for certain values of velocity ratio parameter (c/a), and the increment in the unsteadiness parameter A increases the range of c/a where solution exists. Also, with increasing A, the skin friction coefficient increases for the first solution and decreases for the second.
|
Keywords:
47.15.Cb
|
|
Received: 26 April 2011
Published: 28 July 2011
|
|
PACS: |
47.15.Cb
|
(Laminar boundary layers)
|
|
|
|
|
[1] Crane L J 1970 Z. Angew. Math. Phys. 21 645
[2] Gupta P S and Gupta A S 1977 Can. J. Chem. Eng. 55 744
[3] Chen C K and Char M I 1988 J. Math. Anal. Appl. 135 568
[4] Pavlov K B 1974 Magn. Gidrod. 10 146
[5] Hiemenz K 1911 Dinglers Polytech. J. 326 321
[6] Chiam T C 1994 J. Phys. Soc. Jpn. 63 2443
[7] Mahapatra T R and Gupta A S 2001 Acta Mech. 152 191
[8] Mahapatra T R and Gupta A S 2002 Heat Mass Trans. 38 517
[9] Nazar R, Amin N, Filip D and Pop I 2004 Int. J. Non-Linear Mech. 39 1227
[10] Layek G C, Mukhopadhyay S and Samad Sk A 2007 Int. Commun. Heat Mass Trans. 34 347
[11] Hayat T, Javed T and Abbas Z 2009 Nonlinear Anal. Real World Appl. 10 1514
[12] Abbas Z, Wang Y, Hayat T, Oberlack M 2010 Nonlinear Anal. Real World Appl. 11 3218
[13] Wang C Y 1990 Q. Appl. Math. 48 601
[14] Miklavčič M and Wang C Y 2006 Q. Appl. Math. 64 283
[15] Hayat T, Abbas Z and Sajid M 2007 ASME J. Appl. Mech. 74 1165
[16] Hayat T, Javed T and Sajid M 2008 Phys. Lett. A 372 3264
[17] Hayat T, Abbas Z and Ali N 2008 Phys. Lett. A 372 4698
[18] Fang T and Zhang J 2009 Commun. Nonlinear Sci. Numer. Simulat. 14 2853
[19] Noor N F M, Kechil S A and Hashim I 2010 Commun. Nonlinear Sci. Numer. Simulat. 15 144
[20] Fang T, Yao S, Zhang J and Aziz A 2010 Commun. Nonlinear Sci. Numer. Simulat. 15 1831
[21] Wang C Y 2008 Int. J. Nonlinear Mech. 43 377
[22] Ishak A, Lok Y Y and Pop I 2010 Chem. Eng. Commun. 197 1417
[23] Bhattacharyya K and Layek G C 2011 Int. J. Heat Mass Trans. 54 302
[24] Bhattacharyya K, Mukhopadhyay S and Layek G C 2011 Int. J. Heat Mass Trans. 54 308
[25] Yang K T 1958 ASME J. Appl. Mech. 25 421
[26] Katagiri M 1969 J. Phys. Soc. Jpn. 27 1662
[27] Kumari M and Nath G 1984 Int. J. Eng. Sci. 22 755
[28] Surma Devi C D, Takhar H S and Nath G 1986 Int. J. Heat Mass Trans. 29 1996
[29] Soundalgekar V M, Ramana Murty T V and Takhar H S 1990 Indian J. Pure Appl. Math. 21 384
[30] Smith S H 1994 ASME J. Appl. Mech. 61 629
[31] Pop I and Na T Y 1996 Mech. Res. Commun. 23 413
[32] Elbashbeshy E M A and Bazid M A A 2004 Heat Mass Trans. 41 1
[33] Tsai R, Huang K H and Huang J S 2008 Int. Commun. Heat Mass Trans. 35 1340
[34] Nazar R, Amin N, Filip D and Pop I 2004 Int. J. Eng. Sci. 42 1241
[35] Sharma P R and Singh G 2008 Thammasat Int. J. Sci. Tech. 13 11
[36] Mukhopadhyay S and Andersson H I 2009 Heat Mass Trans. 45 1447
[37] Ishak A, Nazar R and Pop I 2009 Nonlinear Anal. Real World Appl. 10 2909
[38] Hayat T, Qasim M and Abbas Z 2010 Commun. Nonlinear Sci. Numer. Simulat. 15 2375
[39] Fang T, Zhang J and Yoa S 2009 Chin. Phys. Lett. 26 014703
[40] Merkin J H and Kumaran V 2010 Eur. J. Mech. B Fluids 29 357
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|