Chin. Phys. Lett.  2011, Vol. 28 Issue (8): 080301    DOI: 10.1088/0256-307X/28/8/080301
GENERAL |
Geometric Phase for a Qutrit-Qubit Mixed-Spin System
ZHANG Ai-Ping**, QIANG Wen-Chao, LING Ya-Wen, XIN Hong, YANG Yong-Ming
Faculty of Science, Xi'an University of Architecture and Technology, Xi'an 710055
Cite this article:   
ZHANG Ai-Ping, QIANG Wen-Chao, LING Ya-Wen et al  2011 Chin. Phys. Lett. 28 080301
Download: PDF(853KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the geometric phase of a qutrit-qubit mixed-spin system in an external homogeneous magnetic field. Both the spin-spin interaction strength J and the external magnetic field B can affect the geometric phase of the system. In addition, we consider the negativity of the composite system. The relationship between the negativity and the geometric phase is obtained. Finally, we calculate the geometric phase for a thermal mixed state and show how the geometric phase depends on the rescaled coupling parameter and temperature. In the limit T→0, we can recover the result of the ground state. This analysis has some implications in realistic implementations of geometric quantum computation.
Keywords: 03.65.Vf      03.65.Ud      03.67.Pp     
Received: 12 March 2011      Published: 28 July 2011
PACS:  03.65.Vf (Phases: geometric; dynamic or topological)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Pp (Quantum error correction and other methods for protection against decoherence)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/8/080301       OR      https://cpl.iphy.ac.cn/Y2011/V28/I8/080301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Ai-Ping
QIANG Wen-Chao
LING Ya-Wen
XIN Hong
YANG Yong-Ming
[1] Berry M V 1984 Proc. R. Soc. London A 392 45
[2] Aharonov Y and Anandan J 1987 Phys. Rev. Lett. 58 1593
[3] Samuel J and Bhandari R 1988 Phys. Rev. Lett. 60 2339
[4] Pati A K 1995 Phys. Rev. A 52 2576
[5] Uhlmann A 1986 Rep. Math. Phys. 24 229
[6] Uhlmann A 1991 Lett. Math. Phys. 21 229
[7] Singh K, Tong D M, Basu K, Chen J L and Du J F 2003 Phys. Rev. A 67 032106
[8] Zanardi P and Rasetti M 1999 Phys. Lett. A 264 94
[9] Zhu S L and Zanardi P 2005 Phys. Rev. A 72 020301
[10] Duan L M, Cirac J I and Zoller P 2001 Science 292 1695
[11] Sjöqvist E, Pati A K, Ekert A, Anandan J S, Ericsson M, Oi D K L and Vedral V 2000 Phys. Rev. Lett. 85 2845
[12] Carollo A, Fuentes-Guridi I, Santos M F and Vedral V 2003 Phys. Rev. Lett. 90 160402
[13] Carollo A, Fuentes-Guridi I, Santos M F and Vedral V 2004 Phys. Rev. Lett. 92 020402
[14] Tong D M, Sjöqvist E, Kwek L C and Oh C H 2004 Phys. Rev. Lett. 93 080405
[15] Tong D M, Chen J L and Du J F 2003 Chin. Phys. Lett. 20 793
[16] Zheng S B and Guo G C 2000 Phys. Rev. Lett. 85 2392
[17] Raussendorf R and Briegel H J 2001 Phys. Rev. Lett. 86 5188
[18] Duan L M, Demler E and Lukin M D 2003 Phys. Rev. Lett. 91 090402
[19] Hartmann M J et al 2007 Phys. Rev. Lett. 99 160501
[20] Amesen M C, Bose S and Vedral V 2001 Phys. Rev. Lett. 87 017901
[21] Sun Y, Chen Y G and Chen H 2003 Phys. Rev. A 68 044301
[22] Rezakhani A T and Zanardi P 2006 Phys. Rev. A 73 052117
[23] Kwan M K et al 2008 Phys. Rev. A 77 062311
[24] Zyczkowski K, Horodecki P, Sanpera A et al 1998 Phys. Rev. A 58 883
[25] Peres A 1996 Phys. Rev. Lett. 77 1413
[26] Vidal G and Werner R R 2002 Phys. Rev. A 65 032314
Related articles from Frontiers Journals
[1] WANG Qiang, YE Chong, FU Li-Bin. Quantum Cyclotron Orbits of a Neutral Atom Trapped in a Triple Well with a Synthetic Gauge Field[J]. Chin. Phys. Lett., 2012, 29(6): 080301
[2] LIAN Jin-Ling, ZHANG Yuan-Wei, LIANG Jiu-Qing. Macroscopic Quantum States and Quantum Phase Transition in the Dicke Model[J]. Chin. Phys. Lett., 2012, 29(6): 080301
[3] REN Jie, WU Yin-Zhong, ZHU Shi-Qun. Quantum Discord and Entanglement in Heisenberg XXZ Spin Chain after Quenches[J]. Chin. Phys. Lett., 2012, 29(6): 080301
[4] XIANG Shao-Hua**,DENG Xiao-Peng,SONG Ke-Hui. Protection of Two-Qubit Entanglement by the Quantum Erasing Effect[J]. Chin. Phys. Lett., 2012, 29(5): 080301
[5] SHAN Chuan-Jia,**,CAO Shuai,XUE Zheng-Yuan,ZHU Shi-Liang. Anomalous Temperature Effects of the Entanglement of Two Coupled Qubits in Independent Environments[J]. Chin. Phys. Lett., 2012, 29(4): 080301
[6] YAN Long,FENG Xun-Li**,ZHANG Zhi-Ming,LIU Song-Hao. An Extra Phase for Two-Mode Coherent States Displaced in Noncommutative Phase Space[J]. Chin. Phys. Lett., 2012, 29(4): 080301
[7] LI Hong-Rong**,ZHANG Pei,GAO Hong,BI Wen-Ting,ALAMRI M. D.,LI Fu-Li. Non-Equilibrium Quantum Entanglement in Biological Systems[J]. Chin. Phys. Lett., 2012, 29(4): 080301
[8] GE Rong-Chun, LI Chuan-Feng, GUO Guang-Can. Spin Dynamics in the XY Model[J]. Chin. Phys. Lett., 2012, 29(3): 080301
[9] M. Ramzan. Decoherence and Multipartite Entanglement of Non-Inertial Observers[J]. Chin. Phys. Lett., 2012, 29(2): 080301
[10] Piotr Zawadzki**. New View of Ping-Pong Protocol Security[J]. Chin. Phys. Lett., 2012, 29(1): 080301
[11] LI Jun-Gang, **, ZOU Jian, **, XU Bao-Ming, SHAO Bin, . Quantum Correlation Generation in a Damped Cavity[J]. Chin. Phys. Lett., 2011, 28(9): 080301
[12] Abbass Sabour, Mojtaba Jafarpour** . A Probability Measure for Entanglement of Pure Two-Qubit Systems and a Useful Interpretation for Concurrence[J]. Chin. Phys. Lett., 2011, 28(7): 080301
[13] QIAN Yi, XU Jing-Bo** . Quantum Discord Dynamics of Two Atoms Interacting with Two Quantized Field Modes through a Raman Interaction with Phase Decoherence[J]. Chin. Phys. Lett., 2011, 28(7): 080301
[14] ZHANG Ji-Ying, ZHOU Zheng-Wei**, GUO Guang-Can . Eliminating Next-Nearest-Neighbor Interactions in the Preparation of Cluster State[J]. Chin. Phys. Lett., 2011, 28(5): 080301
[15] TIAN Li-Jun, **, QIN Li-Guo, ZHANG Hong-Biao . Entanglement of Two-Superconducting-Qubit System Coupled with a Fixed Capacitor[J]. Chin. Phys. Lett., 2011, 28(5): 080301
Viewed
Full text


Abstract