CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Significant Improvement of Organic Thin-Film Transistor Mobility Utilizing an Organic Heterojunction Buffer Layer |
PAN Feng1,2, QIAN Xian-Rui1,2, HUANG Li-Zhen1,2, WANG Hai-Bo1, YAN Dong-Hang1**
|
1 State Key Laboratory of Polymer Chemistry and Physics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022
2 Graduate School of Chinese Academy of Sciences, Beijing 100039
|
|
Cite this article: |
PAN Feng, QIAN Xian-Rui, HUANG Li-Zhen et al 2011 Chin. Phys. Lett. 28 078504 |
|
|
Abstract High-mobility vanadyl phthalocyanine (VOPc)/5,5"'−bis(4-fluorophenyl)-2,2':5',2":5",2"'−quaterthiophene (F2-P4T) thin-film transistors are demonstrated by employing a copper hexadecafluorophthalocyanine (F16CuPc)/copper phthalocyanine (CuPc) heterojunction unit, which are fabricated at different substrate temperatures, as a buffer layer. The highest mobility of 4.08 cm2/Vs is achieved using a F16CuPc/CuPc organic heterojunction buffer layer fabricated at high substrate temperature. Compared with the random small grain-like morphology of the room-temperature buffer layer, the high-temperature organic heterojunction presents a large-sized fiber-like film morphology, resulting in an enhanced conductivity. Thus the contact resistance of the transistor is significantly reduced and an obvious improvement in device mobility is obtained.
|
Keywords:
85.30.De
81.05.Fb
85.30.Tv
|
|
Received: 14 April 2011
Published: 29 June 2011
|
|
PACS: |
85.30.De
|
(Semiconductor-device characterization, design, and modeling)
|
|
81.05.Fb
|
(Organic semiconductors)
|
|
85.30.Tv
|
(Field effect devices)
|
|
|
|
|
[1] Katsuhara M, Yagi I, Yumoto A, Noda M, Hirai N, Yasuda R, Moriwaki T, Ushikura S, Imaoka A, Urabe T and Nomoto K 2010 J. Soc. Inf. Disp. 18 399
[2] Baude P F, Ender D A, Haase M A, Kelley T W, Muyres D V and Theiss S D 2003 Appl. Phys. Lett. 82 3964
[3] Rotzoll R, Mohapatra S, Olariu V, Wenz R, Grigas M, Dimmler K, Shchekin O and Dodabalapur A 2006 Appl. Phys. Lett. 88 123502
[4] Torsi L, Farinola G M, Marinelli F, Tanese M C, Omar O H, Valli L, Babudri F, Palmisano F, Zambonin P G and Naso F 2008 Nature Mater. 7 412
[5] Wang H B, Song D, Yang J L, Yu B, Geng Y H and Yan D H 2007 Appl. Phys. Lett. 90 253510
[6] Pan F, Tian H K, Qian X R, Huang L Z, Geng Y H and Yan D H 2011 Org. Electron. 12 1358
[7] Ishii H, Sugiyama K, Ito E and Seki K 1999 Adv. Mater. 11 605
[8] Wang H B, Wang X J, Yu B, Geng Y H and Yan D H 2008 Appl. Phys. Lett. 93 113303
[9] Hajlaoui R, Horowitz G, Garnier F, ArceBrouchet A, Laigre L, ElKassmi A, Demanze F and Kouki F 1997 Adv. Mater. 9 389
[10] Campbell I H, Rubin S, Zawodzinski T A, Kress J D, Martin R L, Smith D L, Barashkov N N and Ferraris J P 1996 Phys. Rev. B 54 14321
[11] Campbell I H, Kress J D, Martin R L, Smith D L, Barashkov N N and Ferraris J P 1997 Appl. Phys. Lett. 71 3528
[12] Kano M, Minari T and Tsukagoshi K 2009 Appl. Phys. Lett. 94 143304
[13] Chu C W, Li S H, Chen C W, Shrotriya V and Yang Y 2005 Appl. Phys. Lett. 87 193508
[14] Koch N, Elschner A, Schwartz J and Kahn A 2003 Appl. Phys. Lett. 82 2281
[15] Wang J, Wang H B, Zhang J, Yan X J and Yan D H 2005 J. Appl. Phys. 97 026106
[16] Yan X J, Wang J, Wang H B, Wang H and Yan D H 2006 Appl. Phys. Lett. 89 053510
[17] Wang J, Wang H, Yan X, Huang H and Yan D 2005 Appl. Phys. Lett. 87 093507
[18] Zhu F, Yang J B, Song D, Li C H and Yan D H 2009 Appl. Phys. Lett. 94 143305
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|