CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Enhancement-Mode AlGaN/GaN High Electron Mobility Transistors Using a Nano-Channel Array Structure |
LIU Sheng-Hou1,2, CAI Yong1**, GONG Ru-Min2, WANG Jin-Yan2, ZENG Chun-Hong1, SHI Wen-Hua1, FENG Zhi-Hong3, WANG Jing-Jing3, YIN Jia-Yun3, Cheng P. Wen2, QIN Hua4, ZHANG Bao-Shun1
|
1Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215125
2Institute of Microelectronics, Peking University, Beijing 100871
3Science and Technology on ASIC Lab, Hebei Semiconductor Research Institute, Shijiazhuang 050051
4Key Laboratory of Nanodevice and Application, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215125
|
|
Cite this article: |
LIU Sheng-Hou, CAI Yong, GONG Ru-Min et al 2011 Chin. Phys. Lett. 28 077202 |
|
|
Abstract A nano-channel array (NCA) structure is applied to realize enhancement-mode (E-mode) AlGaN/GaN high-electron mobility transistors (HEMTs). The fabricated NCA-HEMT, consisting of 1000 channels connected in parallel with a channel width of 64 nm, shows a threshold voltage of 0.15 V and a subthreshold slope of 78 mV/dec, compared to −3.92 V and 99 mV/dec for a conventional HEMT (C-HEMT), respectively. Both the NCA-HEMT and C-HEMT show similar gate leakage current, indicating no significant degradation in gate leakage characteristics for the NCA-HEMT. The surrounding-field effect and relieved polarization contribute to the very large positive threshold voltage shift, while the work function difference makes it positive.
|
Keywords:
72.80.Ey
85.30.Tv
85.30.De
|
|
Received: 25 March 2011
Published: 29 June 2011
|
|
PACS: |
72.80.Ey
|
(III-V and II-VI semiconductors)
|
|
85.30.Tv
|
(Field effect devices)
|
|
85.30.De
|
(Semiconductor-device characterization, design, and modeling)
|
|
|
|
|
[1] Boutros K S, Burnham S, Wong D, Shinohara K, Hughes B, Zehnder D and McGuire C 2009 International Electron Devices Meeting (Baltimore, MD 7–9 December 2009) p 161
[2] Neudeck P G, Okojie R S and Chen L Y 2002 Proc. IEEE 90 1065
[3] Joshin K, Kikkawa T, Hayashi H, Yokogawa S, Yokoyama M, Adachi N and Takikawa M 2003 International Electron Devices Meeting (Washington, DC 7–10 December 2003) p 983
[4] Ambacher O, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Schaff W J, Eastman L F, Dimitrov R, Wittmer L, Stutzmann M, Rieger W and Hilsenbeck J 1999 J. Appl. Phys. 85 3222
[5] Wang R N, Cai Y, Tang C W, Lau K M and Chen K J 2006 IEEE Electron. Device Lett. 27 793
[6] Haigh D and Everard J 1989 GaAs Technology and Its Impact on Circuits and Systems (London: Peter Peregrinus Ltd.) chap 6
[7] Moon J S, Wong D, Hussain T, Micovic M, Deelman P, Hu M, Antcliffe M, Ngo C, Hashimoto P and McCray L 2002 2002 60th Device Research Conference (Santa Barbara, CA 24–26 June 2002) p 23
[8] Cai Y, Zhou Y G, Chen K J and Lau K M 2005 IEEE Electron. Device Lett. 26 435
[9] Uemoto Y, Hikita M, Ueno H, Matsuo H, Ishida H, Yanagihara M, Ueda T, Tanaka T and Ueda D 2006 International Electron. Devices Meeting (San Francisco, CA 11–13 December 2006) p 907
[10] Ota K, Endo K, Okamoto Y, Ando Y, Miyamoto H and Shimawaki H 2009 International Electron. Devices Meeting (Baltimore, MD 7–9 December 2009) p 153
[11] Ohi K and Hashizume T 2009 Jpn. J. Appl. Phys. 48 081002
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|