Chin. Phys. Lett.  2011, Vol. 28 Issue (7): 077102    DOI: 10.1088/0256-307X/28/7/077102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Effects of an Intense Laser Field and Hydrostatic Pressure on the Intersubband Transitions and Binding Energy of Shallow Donor Impurities in a Quantum Well
U. Yesilgul1**, F. Ungan1, E. Kasapoglu1, H. Sari1, I. Sökmen2
1 Department of Physics, Cumhuriyet University, 58140 Sivas, Turkey
2 Department of Physics, Dokuz Eylül University, 35160 Izmir, Turkey
Cite this article:   
U. Yesilgul, F. Ungan, E. Kasapoglu et al  2011 Chin. Phys. Lett. 28 077102
Download: PDF(902KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We have calculated the intersubband transitions and the ground-state binding energies of a hydrogenic donor impurity in a quantum well in the presence of a high-frequency laser field and hydrostatic pressure. The calculations are performed within the effective mass approximation, using a variational method. We conclude that the laser field amplitude and the hydrostatic pressure provide an important effect on the electronic and optical properties of the quantum wells. According to the results obtained from the present work, it is deduced that (i) the binding energies of donor impurity decrease as the laser field increase, (ii) the binding energies of donor impurity increase as the hydrostatic pressure increase, (iii) the intersubband absorption coefficients shift toward lower energies as the hydrostatic pressure increases, (iv) the magnitude of absorption coefficients decrease and also shift toward higher energies as the laser field increase. It is hopeful that the obtained results will provide important improvements in device applications.
Keywords: 71.55.Eq      73.20.Hb     
Received: 23 December 2010      Published: 29 June 2011
PACS:  71.55.Eq (III-V semiconductors)  
  73.20.Hb (Impurity and defect levels; energy states of adsorbed species)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/7/077102       OR      https://cpl.iphy.ac.cn/Y2011/V28/I7/077102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
U. Yesilgul
F. Ungan
E. Kasapoglu
H. Sari
I. Sö
kmen
[1] Fanyao Q, Fonseca a L a and Nunes O a C 1996 Phys. Rev. B 54 16405
[2] Fanyao Q, Fonseca a L a and Nunes O a C 1997 J. Appl. Phys. 82 1236
[3] Fanyao Q, Fonseca a L a and Nunes O a C 1998 Superlattices Microstruct. 23 1005
[4] Oliveira L E, Latgé A and Brandi H S 2002 Phys. Status Solidi A 190 667
[5] Johnsen K and Jauho a P 1998 Phys. Rev. B 57 8860
[6] Lima F M S, Amato M A, Olavo L S F, Nunes O A C, Fonseca A L A and Da Silva Jr E F 2007 Phys. Rev. B 75 073201
[7] Brandi H S, Latgé A and Oliveira L E 1998 Phys. Status Solidi B 210 671
[8] Elabsy a M 1994 J. Phys.: Condens. Matter 6 10025
[9] Morales a L, Montes A, Lopez S Y and Duque C a 2002 J. Phys.: Condens. Matter 14 987
[10] Lopez S Y, Porras-Montenegro N and Duque C a 2003 Phys. Status Solidi C 648
[11] Morales a L, Montes A, Lopez S Y, Raigoza N and Duque C A 2003 Phys. Status Solidi C 652
[12] Lopez S Y, Porras-Montenegro N and Duque C a 2003 Semicond. Sci. Technol. 18 718
[13] Oyoko H O, Duque C a and Porras-Montenegro N 2001 J. Appl. Phys. 90 819
[14] Correa J D, PorrasMontenegro N and Duque C A 2004 Phys. Status Solidi B 241 2440
[15] Lima F M S, Amato M A, Nunes O a C, Fonseca A L A, Enders B G and Da Silva Jr E F 2009 J. Appl. Phys. 105 123111
[16] Ehrenreich H J 1961 J. Appl. Phys. 32 2155
[17] Aspens D E 1976 Phys. Rev. B 14 5331
[18] Adachi S 1985 J. Appl. Phys. 58 R1
[19] Webler B B, Cardona M, Kim C K and Rodriguez S 1975 Phys. Rev. B 12 5729
[20] Samara G A 1983 Phys. Rev. B 27 3494
[21] Kopf R F, Herman M H, Schnoes M L, Perley a P, Livescu G and Ohring M 1992 J. Appl. Phys. 71 5004
[22] Montes A, Morales a L and Duque C A 2002 Surf. Rev. Lett. 9 1753
[23] Eseanu N, Niculescu E C and Burileanu L M 2009 Physica E 41 1386
[24] Peter a J and Navaneethakrishnan K 2008 Superlattices Microstruct. 43 63
Related articles from Frontiers Journals
[1] JI Chang-Jian**, ZHANG Cheng-Qiang, ZHAO Gang, WANG Wen-Jing, SUN Gang, YUAN Hui-Min, HAN Qi-Feng . Preparation and Properties of Diluted Magnetic Semiconductors GaMnAs by Low-Temperature Molecular Epitaxy[J]. Chin. Phys. Lett., 2011, 28(9): 077102
[2] DAI Ke-Hui, **, WANG Lian-Shan**, HUANG De-Xiu, SOH Chew-Beng, CHUA Soo-Jin, . Influence of Size of ZnO Nanorods on Light Extraction Enhancement of GaN-Based Light-Emitting Diodes[J]. Chin. Phys. Lett., 2011, 28(9): 077102
[3] XIE Zi-Li**, ZHANG Rong, LIU Bin, XIU Xiang-Qian, SU Hui, LI Yi, HUA Xue-Mei, ZHAO Hong, CHEN Peng, HAN Ping, SHI Yi, ZHENG You-Dou . Growth and Properties of Blue and Amber Complex Light Emitting InGaN/GaN Multi-Quantum Wells[J]. Chin. Phys. Lett., 2011, 28(8): 077102
[4] WANG Jin, WANG Hui, ZHAO Wang, MA Yan, LI Wan-Cheng, XIA Xiao-Chuan, SHI Zhi-Feng, ZHAO Long, ZHANG Bao-Lin, DONG Xin**, DU Guo-Tong . Crystalline, Optical and Electrical Properties of NiZnO Thin Films Fabricated by MOCVD[J]. Chin. Phys. Lett., 2011, 28(7): 077102
[5] SUN Hong-Cheng, XU Jun**, LIU Yu, MU Wei-Wei, XU Wei, LI Wei, CHEN Kun-Ji . Subband Light Emission from Phosphorous-Doped Amorphous Si/SiO2 Multilayers at Room Temperature[J]. Chin. Phys. Lett., 2011, 28(6): 077102
[6] WANG Yong, **, YU Nai-Sen, LI Ming, LAU Kei-May . Improved AlGaN/GaN HEMTs Grown on Si Substrates Using Stacked AlGaN/AlN Interlayer by MOCVD[J]. Chin. Phys. Lett., 2011, 28(5): 077102
[7] SHI Feng, , ZHANG Yi-Jun, CHENG Hong-Chang, ZHAO Jing, XIONG Ya-Juan, CHANG Ben-Kang** . Theoretical Revision and Experimental Comparison of Quantum Yield for Transmission-Mode GaAlAs/GaAs Photocathodes[J]. Chin. Phys. Lett., 2011, 28(4): 077102
[8] HOU Qi-Feng**, WANG Xiao-Liang, XIAO Hong-Ling, WANG Cui-Mei, YANG Cui-Bai, YIN Hai-Bo, LI Jin-Min, WANG Zhan-Guo . Cathodoluminescence of Yellow and Blue Luminescence in Undoped Semi-insulating GaN and n-GaN[J]. Chin. Phys. Lett., 2011, 28(3): 077102
[9] JIN Dan, Ateeq ur Rehman, QIAN Hui-Qin, JIANG Li-Zhen, ZHANG Han-Jie, LI Hai-Yang, HE Pi-Mo, BAO Shi-Ning . Geometric and Electronic Structures at the Interface between Iron Phthalocyanine and Si (110)[J]. Chin. Phys. Lett., 2011, 28(11): 077102
[10] HOU Qi-Feng, WANG Xiao-Liang, XIAO Hong-Ling, WANG Cui-Mei, YANG Cui-Bai, LI Jin-Min. Variation of Optical Quenching of Photoconductivity with Resistivity in Unintentional Doped GaN[J]. Chin. Phys. Lett., 2010, 27(5): 077102
[11] PAN Yao-Bo, HAO Mao-Sheng, QI Sheng-Li, FANG Hao, ZHANG Guo-Yi. Effect of Interface Nanotexture on Light Extraction of InGaN-Based Green Light Emitting Diodes[J]. Chin. Phys. Lett., 2010, 27(3): 077102
[12] YANG Ling, MA Jing-Jing, ZHU Cheng, HAO Yue, MA Xiao-Hua. Degradation of AlGaN/GaN High Electron Mobility Transistors with Different AlGaN Layer Thicknesses under Strong Electric Field[J]. Chin. Phys. Lett., 2010, 27(2): 077102
[13] XU Zheng-Yu, QIN Zhi-Xin**, SANG Li-Wen, ZHANG Yan-Zhao, SHEN Bo, ZHANG Guo-Yi, ZHAO Lan, ZHANG Xiang-Feng, CHENG Cai-Jing, SUN Wei-Guo. Effect of Indium Ambient on Electrical Properties of Mg-Doped AlxGa1-xN[J]. Chin. Phys. Lett., 2010, 27(12): 077102
[14] HUANG Jie, **, GUO Tian-Yi, ZHANG Hai-Ying, XU Jing-Bo, FU Xiao-Jun, YANG Hao, NIU Jie-Bin. InAlAs/InGaAs Pseudomorphic High Eelectron Mobility Transistors Grown by Molecular Beam Epitaxy on the InP Substrate[J]. Chin. Phys. Lett., 2010, 27(11): 077102
[15] LIU Shu-Jian, YU Qing-Xuan, WANG Jian, LIAO Yuan, LI Xiao-Guang. Photoluminescence of a ZnO/GaN Heterostructure Interface[J]. Chin. Phys. Lett., 2009, 26(7): 077102
Viewed
Full text


Abstract