PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
|
|
|
|
A Modified Third-Order Semi-Discrete Central-Upwind Scheme for MHD Simulation |
JI Zhen1,2**, ZHOU Yu-Fen1, HOU Tian-Xiang3
|
1 State Key Laboratory of Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190
2 Graduate School, Chinese Academy of Sciences, Beijing 100049
3 China Meteorological Administration Training Centre, Beijing 100081
|
|
Cite this article: |
JI Zhen, ZHOU Yu-Fen, HOU Tian-Xiang 2011 Chin. Phys. Lett. 28 075205 |
|
|
Abstract The Kurganov scheme is a third-order semi-discrete central numerical algorithm. The high solution of the scheme is ensured by a piecewise quadratic non-oscillatory reconstruction which consists of the cell-average data. We employ a modification of the smooth limiter of reconstruction in a simple way. The modified limiter possesses rigorous positivity and the reformulation does not change the non-oscillatory property of reconstruction. In order to explore the potential capability of application of the modified Kurganov scheme to magnetohydrodynamics (MHD) and resistive magnetohydrodynamics (RMHD) equations, two numerical problems are simulated in two dimensions (2D). These numerical simulations demonstrate that the modified Kurganov scheme keeps high precision and has stable reliable results for MHD and RMHD applications.
|
Keywords:
52.30.Cv
95.30.Qd
|
|
Received: 17 February 2011
Published: 29 June 2011
|
|
PACS: |
52.30.Cv
|
(Magnetohydrodynamics (including electron magnetohydrodynamics))
|
|
95.30.Qd
|
(Magnetohydrodynamics and plasmas)
|
|
|
|
|
[1] Kurganov A, Petrova G 2001 Numer. Math. 88 683
[2] Kurganov A, Noelle S and Petrova G 2001 SIAM J. Sci. Comput. 23 707
[3] Kurganov A, Tadmor E 2000 J. Comput. Phys. 60 241
[4] Kurganov A, Tadmor E 2000 J. Comput. Phys. 160 720
[5] Kurganov A, Levy D 2000 SIAM J. Sci. Comput. 22 1461
[6] Bryson S, Levy D 2003 J. Comput. Phys. 189 63
[7] Bryson S, Levy D 2006 J. Sci. Comput. 27 163
[8] Abreu E, Pereira F, Ribeiro S 2009 Comput. Appl. Math. 28 87
[9] Greenshields C J, Weller H G, Gasparini L and Reese J M 2010 Int. J. Numer. Meth. Fluids. 63 1
[10] Dehghan M, Jazlanian R 2010 J. Vib. Control (accepted)
[11] Peer A A I, Gopaul A, Dauhoo M Z and Bhuruth M 2008 Appl. Numer. Math. 58 674
[12] Bryson S, Kurganov A, Levy D and Petrova G 2005 IMA J. Numer. Anal. 25 113
[13] Kurganov A, Petrova G and Popov B 2007 SIAM J. Sci. Comput. 29 2381
[14] Kurganov A, Petrova G 2009 SIAM J. Sci. Comput. 31 1742
[15] Harten A, Engquist B, Osher S and Chakravarthy S R 1987 J. Comput. Phys. 71 231
[16] Shu C W 1990 J. Sci. Comput. 5 127
[17] Jiang G S, Shu C W 1996 J. Comput. Phys. 126 202
[18] Liu X D, Osher S and Chan T 1994 J. Comput. Phys. 115 200
[19] Levy D, Puppo G and Russo G 1999 Math. Model. and Numer. Anal. 33 547
[20] Dai W, Woodward P R 1998 J. Comput. Phys. 142 331
[21] Han J Q, Tang H Z 2007 J. Comput. Phys. 220 791
[22] Feng X S, Zhou Y F and Hu Y Q 2006 Chin. J. Space Sci. 26 1
[23] Wei F S, Hu Q and Feng X S 2001 Chin. Sci. Bull. 46 111
[24] Wei F S, Hu Q, Schwen R and Feng X S 2000 Sci. Chin. A 43 629
[25] Xiong M, Peng Z, Hu Y Q, Zheng H N 2009 Chin. Phys. Lett. 26 015202
[26] Zheng H N, Zhang Y Y and Wang S et al 2006 Chin. Phys. Lett. 23 399
[27] Feng X S, Yang L P and Xiang C Q et al 2010 Astrophys. J. 723 300
[28] Feng X S, Hu Y Q and Wei F S 2006 Sol. Phys. 235 235
[29] Hu Y Q, Feng X S 2006 Sol. Phys. 238 329
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|