Chin. Phys. Lett.  2011, Vol. 28 Issue (7): 075204    DOI: 10.1088/0256-307X/28/7/075204
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Role of Jeans Instability in Multi-Component Quantum Plasmas in the Presence of Fermi Pressure
S. Ali Shan1,2,3**, A. Mushtaq1
1Theoretical Plasma Physics Division, PINSTECH P.O. Nilore, Islamabad, Pakistan
2Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
3National Centre For Physics (NCP), Shahdra Valley Road, QAU Campus, Islamabad, Pakistan
Cite this article:   
S. Ali Shan, A. Mushtaq 2011 Chin. Phys. Lett. 28 075204
Download: PDF(459KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The quantum hydrodynamic model is employed to investigate the effects of gravitational potential on multi-component dusty plasmas. The effects of Fermi temperature ratios of ions to electrons (TFi/TFe) and positrons to electrons (TFp/TFe) have been calculated and presented graphically. It is observed that an increase in the Fermi temperature ratios of ions to electrons and positrons to electrons stabilizes the Jeans instability as the mode phase speed increases with these ratios. In the absence of the statistical effects due to Fermi pressure, the dispersion is weak. The stability criteria are calculated for each case separately.
Keywords: 52.35.-g      52.30.Ex      03.65.-w      05.60.Gg     
Received: 02 January 2011      Published: 29 June 2011
PACS:  52.35.-g (Waves, oscillations, and instabilities in plasmas and intense beams)  
  52.30.Ex (Two-fluid and multi-fluid plasmas)  
  03.65.-w (Quantum mechanics)  
  05.60.Gg (Quantum transport)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/7/075204       OR      https://cpl.iphy.ac.cn/Y2011/V28/I7/075204
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
S. Ali Shan
A. Mushtaq
[1] Ali S and Shukla P K 2007 Eur. Phys. J. D 41 319
[2] Shukla P K and Mamun A A 2002 Introduction to Dusty Plasma Physics (Bristol: Institute of Physics)
[3] Haas F, Manfredi G and Feix M R 2000 Phys. Rev. E 62 2763
[4] Shukla P K and Ali S 2005 Phys. Plasmas 12 114502
[5] El-Taibanya W F and Miki Wadatib 2007 Phys. Plasmas 14 042302
[6] Bingham R and Tsytovich V N 2001 Astron. Astrophys. 376 43
[7] Shukla P K and Stenflo L 2006 Phys. Lett. A 355 378
[8] Masood W, Salimullah M and Shah H A 2008 Phys. Lett. A 372 6757
[9] Mushtaq A 2007 Phys. Plasmas 14 113701
[10] Pandey B P, Avinash K and Dwivedi C B 1994 Phys. Rev. E 49 5599
[11] Kolb E W and Turner M S 1990 The Early Universe (Reading MA: Addison-Wesley) p 342
[12] Landau L D and Lifshitz E M 1980 Statistical Physics (Oxford: Butterworth-Heinemann) part 1
[13] Haas F, Garcia L G, Goedert J and Manfredi G 2003 Phys. Plasmas 10 3858
[14] Shukla N, Shukla P K, Brodin G and Stenflo L 2008 Phys. Plasmas 15 044503
[15] Ali S and Shukla P K 2006 Phys. Plasmas 13 022313
[16] Tajima T and Shibata K 1997 Plasma Astrophysics (New York: Addison Wesley)
[17] Ditmire T, Tisch J W G and Springate E et al 1997 Nature 386 54
Ditmire T, Tisch J W G and Springate E et al 1997 Phys. Rev. Lett. 78 2732
[18] Liu C S and Tripathi V K 2003 Phys. Plasmas 10 4085
[19] Mourou G A, Barty C P J and Perry M D 1998 Phys. Today 51 22
Related articles from Frontiers Journals
[1] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 075204
[2] ZHOU Jun,SONG Jun,YUAN Hao,ZHANG Bo. The Statistical Properties of a New Type of Photon-Subtracted Squeezed Coherent State[J]. Chin. Phys. Lett., 2012, 29(5): 075204
[3] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 075204
[4] Ahmad Nawaz. Quantum State Tomography and Quantum Games[J]. Chin. Phys. Lett., 2012, 29(3): 075204
[5] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 075204
[6] ZHAI Zhi-Yuan, YANG Tao, PAN Xiao-Yin**. Exact Propagator for the Anisotropic Two-Dimensional Charged Harmonic Oscillator in a Constant Magnetic Field and an Arbitrary Electric Field[J]. Chin. Phys. Lett., 2012, 29(1): 075204
[7] Ciprian Dariescu, Marina-Aura Dariescu**. Chiral Fermion Conductivity in Graphene-Like Samples Subjected to Orthogonal Fields[J]. Chin. Phys. Lett., 2012, 29(1): 075204
[8] B. Farokhi, ** F. Amini, M. Eghbali . Dust Acoustic Rotation Modes in Magnetized Complex Plasmas[J]. Chin. Phys. Lett., 2011, 28(7): 075204
[9] ZHANG Xue, ZHENG Tai-Yu**, TIAN Tian, PAN Shu-Mei** . The Dynamical Casimir Effect versus Collective Excitations in Atom Ensemble[J]. Chin. Phys. Lett., 2011, 28(6): 075204
[10] HOU Shen-Yong**, YANG Kuo . Properties of the Measurement Phase Operator in Dual-Mode Entangle Coherent States[J]. Chin. Phys. Lett., 2011, 28(6): 075204
[11] FAN Hong-Yi, ZHOU Jun, **, XU Xue-Xiang, HU Li-Yun . Photon Distribution of a Squeezed Chaotic State[J]. Chin. Phys. Lett., 2011, 28(4): 075204
[12] WANG Zhen, WANG He-Ping, WANG Zhi-Xi**, FEI Shao-Ming . Local Unitary Equivalent Consistence for n−Party States and Their (n-1)-Party Reduced Density Matrices[J]. Chin. Phys. Lett., 2011, 28(2): 075204
[13] RONG Shu-Jun**, LIU Qiu-Yu . Flavor State of the Neutrino: Conditions for a Consistent Definition[J]. Chin. Phys. Lett., 2011, 28(12): 075204
[14] WANG Ji-Suo, **, MENG Xiang-Guo, FAN Hong-Yi . A Family of Generalized Wigner Operators and Their Physical Meaning as Bivariate Normal Distribution[J]. Chin. Phys. Lett., 2011, 28(10): 075204
[15] XU Xue-Fen, ZHU Shi-Qun. From the Thermo Wigner Operator to the Thermo Husimi Operator in Thermo Field Dynamics[J]. Chin. Phys. Lett., 2010, 27(9): 075204
Viewed
Full text


Abstract