Chin. Phys. Lett.  2011, Vol. 28 Issue (7): 075202    DOI: 10.1088/0256-307X/28/7/075202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Nonlinear Plasma Dynamics in Electron Heating of Asymmetric Capacitive Discharges with a Fluid Sheath Model
DAI Zhong-Ling, WANG You-Nian**
School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116023
Cite this article:   
DAI Zhong-Ling, WANG You-Nian 2011 Chin. Phys. Lett. 28 075202
Download: PDF(745KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A fluid radio-frequency (rf) sheath model coupled to an equivalent circuit method is adopted to describe the nonlinear series resonance effects due to nonlinear interaction of plasma bulk and sheath in asymmetric capacitive discharges. With the fluid sheath model, we can determine self-consistently the relationship between the instantaneous potential drop across the rf sheath and the instantaneous sheath thickness. The numerical results demonstrate that the self-excitation of the plasma series resonance significantly enhances both ohmic heating and stochastic heating. Also, we observe that the effects of nonlinear series resonance increases the total power dissipation by factors of 2–5 for low pressure capacitive plasmas. Furthermore, we find that the largest harmonic is about 13 for the plasma current.
Keywords: 52.50.Qt      52.40.Kh     
Received: 23 March 2011      Published: 29 June 2011
PACS:  52.50.Qt (Plasma heating by radio-frequency fields; ICR, ICP, helicons)  
  52.40.Kh (Plasma sheaths)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/7/075202       OR      https://cpl.iphy.ac.cn/Y2011/V28/I7/075202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
DAI Zhong-Ling
WANG You-Nian
[1] Lieberman M A 1988 IEEE Trans. Plasma Sci. 16 638
[2] Turner M M 1995 Phys. Rev. Lett. 75 1312
[3] Lieberman M A and Godyak V A 1998 IEEE Trans. Plasma Sci. 26 955
[4] Gozadinos G, Turner M M and Vender D 2001 Phys. Rev. Lett. 87 135004
[5] Kaganovich I D 2002 Phys. Rev. Lett. 89 265006
[6] Kawamura E, Lieberman M A and Lichtenberg A J 2006 Phys. Plasmas 13 053506
[7] Turner M M and Chabert P 2006 Phys. Rev. Lett. 96 205001
[8] Turner M M and Chabert P 2007 Plasma Sources Sci. Technol. 16 364
[9] Lieberman M A and Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing 2nd edn (New York: Wiley) pp 396–397
[10] Taillet J 1969 Am. J. Phys. 37 423
[11] Annaratone B M, Ku V P T and Allen J E 1995 J. Appl. Phys. 77 5455
[12] Ku V P T, Annaratone B M and Allen J E 1998 J. Appl. Phys. 84 6536
[13] Qiu W D, Bowers K J and Birdsall C K 2003 Plasma Sources Sci. Technol. 12 57
[14] Czarnetzki U, Mussenbrock T and Brinkmann R P 2006 Phys. Plasmas 13 123503
[15] Mussenbrock T and Brinkmann R P 2006 Appl. Phys. Lett. 88 151503
[16] Mussenbrock T et al 2006 Phys. Plasmas 13 083501
[17] Mussenbrock T and Brinkmann R P 2007 Plasma Sources Sci. Technol. 16 377
[18] Lieberman M A et al 2008 Phys. Plasmas 15 063505
[19] Mussenbrock T et al 2008 Phys. Rev. Lett. 101 085004
[20] Ziegler D et al 2009 Phys. Plasmas 16 023503
[21] Chen F F 1983 Introduction to Plasma Physics and Controlled Fusion 2nd edn (New York: Springer) vol I p 9
Related articles from Frontiers Journals
[1] LI Xiao-Ling**, WAN Bao-Nian, ZHONG Guo-Qiang, HU Li-Qun, LIN Shi-Yao, ZHANG Xin-Jun, ZANG Qing . Neutron Flux Measurements in an ICRF Mode Conversion Regime Heating Plasmas on HT-7[J]. Chin. Phys. Lett., 2011, 28(10): 075202
[2] HAO Mei-Lan, DAI Zhong-Ling, WANG You-Nian. Simulation of Dual Frequency Capacitive Sheath over a Concave Electrode in Low Pressure[J]. Chin. Phys. Lett., 2009, 26(12): 075202
[3] LIU Yu, DAI Zhong-Ling, WANG You-Nian. Dust Particle Properties in a Dual-Frequency Driven Sheath[J]. Chin. Phys. Lett., 2008, 25(4): 075202
[4] DAI Zhong-Ling, LIU Chuan-Sheng, WANG You-Nian. Comparison between Dual Radio Frequency- and Pulse-Driven Sheath near Insulating Substrates[J]. Chin. Phys. Lett., 2008, 25(2): 075202
[5] SUN Ji-Zhong, WANG Qi, ZHANG Jian-Hong, WANG Yan-Hui, WANG De-Zhen. Self-Consistent Model for Atmospheric Pressure Dielectric Barrier Discharges in Helium[J]. Chin. Phys. Lett., 2008, 25(11): 075202
[6] GAN Bao-Xia, CHEN Yin-Hua. Oscillations of Magnetized Dust Grains in Plasma Sheath with Negative Ions[J]. Chin. Phys. Lett., 2007, 24(7): 075202
[7] WANG Li-Hong, DAI Zhong-Ling, WANG You-Nian. Investigation of Dual Radio-Frequency Driven Sheaths and Ion Energy Distributions Bombarding an Insulating Substrate[J]. Chin. Phys. Lett., 2006, 23(3): 075202
[8] ZOU Xiu. Characteristics of Dust Plasma Sheath in an Oblique Magnetic Field[J]. Chin. Phys. Lett., 2006, 23(2): 075202
[9] ZHANG Xian-Mei, WAN Bao-Nian, WU Zhen-Wei, HT- Team. High Bootstrap Current Fraction during the Synergy of LHCD and IBW on the HT-7 Tokamak[J]. Chin. Phys. Lett., 2005, 22(6): 075202
[10] WANG Zheng-Xiong, WANG Wen-Chun, LIU Yue, LIU Jin-Yuan, WANG Xiao-Gang. Dust Charging in the Sheath of an Electronegative Plasma[J]. Chin. Phys. Lett., 2004, 21(4): 075202
[11] MAO Ming, WANG You-Nian. Influence of External Magnetic Field on Anomalous Skin Effects in Inductively Coupled Plasmas[J]. Chin. Phys. Lett., 2004, 21(3): 075202
[12] LI Xue-Chun, WANG You-Nian. Secondary-Electron Emission Effects in Plasma Immersion Ion Implantation with Dielectric Substrates[J]. Chin. Phys. Lett., 2004, 21(2): 075202
[13] WANG Zheng-Xiong, LIU Jin-Yuan, ZOU Xiu, LIU Yue, WANG Xiao-Gang. Sheath Structure of an Electronegative Plasma[J]. Chin. Phys. Lett., 2003, 20(9): 075202
[14] YU Guo-Yang, CHANG Yong-Bin, SHEN Lin-Fang. Fusion Reactivity in the Case of Ion Cyclotron Resonant Heating[J]. Chin. Phys. Lett., 2003, 20(11): 075202
[15] FANG Tong-Zhen, WANG Long, JIANG Di-Ming, ZHANG Hou-Xian. Helicon Discharge Using a Nagoya Type III Antenna[J]. Chin. Phys. Lett., 2001, 18(8): 075202
Viewed
Full text


Abstract