Chin. Phys. Lett.  2011, Vol. 28 Issue (7): 074702    DOI: 10.1088/0256-307X/28/7/074702
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Simultaneous Effects of MHD and Thermal Radiation on the Mixed Convection Stagnation-Point Flow of a Power-Law Fluid
T. Hayat1,2, M. Mustafa3**, S. Obaidat2
1Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000, Pakistan
2Department of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
3Research Centre for Modeling and Simulation, National University of Sciences and Technology, Sector H-12, Islamabad, Pakistan
Cite this article:   
T. Hayat, M. Mustafa, S. Obaidat 2011 Chin. Phys. Lett. 28 074702
Download: PDF(604KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Magnetohydrodynamic (MHD) mixed convection stagnation-point flow and heat transfer of power-law fluids towards a stretching surface is investigated. The homotopy analysis method (HAM) is used in finding the series solution for a nonlinear problem. Closed form solutions for velocity and temperature fields are presented in the limiting cases. Graphical results are shown. It is found that velocity and temperature are decreasing functions of power law index. Numerical computations for shear stress coefficient and local Nusselt number are reported. The present results are also compared with the existing numerical solution in a limiting sense.
Keywords: 47.15.-x      47.50.-d      47.65.-d     
Received: 25 September 2010      Published: 29 June 2011
PACS:  47.15.-x (Laminar flows)  
  47.50.-d (Non-Newtonian fluid flows)  
  47.65.-d (Magnetohydrodynamics and electrohydrodynamics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/7/074702       OR      https://cpl.iphy.ac.cn/Y2011/V28/I7/074702
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
T. Hayat
M. Mustafa
S. Obaidat
[1] Chen C H 2003 Heat Mass Transfer 39 791
[2] Yurusoy M 2006 Int. J. Eng. Sci. 44 325
[3] Wang C and Pop I 2006 J. Non-Newtonian Fluid Mech. 138 161
[4] Prasad K V and Vajravelu K 2009 Int. J. Heat Mass Transfer 52 4956
[5] Abel M S, Datti P S and Mahesha N 2009 Int. J. Heat Mass Transfer 52 2902
[6] Crane L J 1970 Z. Angew. Math. Phys. 21 645
[7] Ishak A, Nazar R and Pop I 2008 Heat Mass Transfer. 44 921
[8] Cortell R 2008 Phys. Lett A 372 631
[9] Liao S J 2005 Int. J. Heat Mass Transfer 48 2529
[10] Ishak A, et al 2008 J. Eng. Math. 62 23
[11] Devi C D S, Takhar H S and Nath G 2003 Int. J. Heat Mass Transfer. 26 71
[12] Nazar R, Amin N, Pop I 2004 Mech. Res. Commun. 31 121
[13] Liao S J 2006 Commun. Nonlinear Sci. Numer. Simul. 11 326
[14] Mukhopadhyay S 2009 Int. J. Heat Mass Transfer 52 3261
[15] Chiam T C J 1994 J. Phys. Soc. Jpn. 63 2443
[16] Mahapatra T R and Gupta A S 2002 Heat Mass Transfer 38 517
[17] Chen C H 1998 Heat Mass Transfer 33 471
[18] Chen C H 2000 Heat Mass Transfer 36 79
[19] Ali M 2004 Heat Mass Transfer 40 285
[20] Mahapatra T R, et al 2009 Int. J. Non-Linear. Mech. 44 124
[21] Xu H and Liao S J 2008 Commun. Non-linear Sci. Numer. Simul. 13 350
[22] Liao S J 2009 Commun. Non-linear Sci. Numer. Simul. 14 983
[23] Tan Y and Abbasbandy S 2008 Commun. Non-linear Sci. Numer. Simul. 13 539
[24] Abbasbandy S 2008 Phys. Lett. A 372 613
[25] Abbasbandy S and Zakaria F S 2008 Non-Linear Dyn. 51 83
[26] Kechil S A and Hashim I 2009 Commun. Non-linear Sci. Numer. Simul. 14 1346
[27] Hashim I, Abdulaziz O and Momani S 2009 Commun. Non-linear Sci. Numer. Simul. 14 674
[28] Hayat T, Mustafa M and Mesloub S 2010 Z. Naturforsch. A 65 401
[29] Hayat T, Mustafa M and Asghar S 2010 Nonlin. Anal.: RWA 11 3186
Related articles from Frontiers Journals
[1] YUN Mei-Juan, ZHENG Wei. Fractal Analysis of Robertson-Stiff Fluid Flow in Porous Media[J]. Chin. Phys. Lett., 2012, 29(6): 074702
[2] M. Sajid, K. Mahmood, Z. Abbas. Axisymmetric Stagnation-Point Flow with a General Slip Boundary Condition over a Lubricated Surface[J]. Chin. Phys. Lett., 2012, 29(2): 074702
[3] Chandaneswar Midya*. Exact Solutions of Chemically Reactive Solute Distribution in MHD Boundary Layer Flow over a Shrinking Surface[J]. Chin. Phys. Lett., 2012, 29(1): 074702
[4] GAO An-Ran, LIU Xiang, GAO Xiu-Li, LI Tie**, GAO Hua-Min, ZHOU Ping, WANG Yue-Lin . A Low Voltage Driven Digital-Droplet-Transporting-Chip by Electrostatic Force[J]. Chin. Phys. Lett., 2011, 28(8): 074702
[5] Krishnendu Bhattacharyya**, G. C. Layek . MHD Boundary Layer Flow of Dilatant Fluid in a Divergent Channel with Suction or Blowing[J]. Chin. Phys. Lett., 2011, 28(8): 074702
[6] T. Hayat, Liaqat Ali. Khan, R. Ellahi**, S. Obaidat . Exact Solutions on MHD Flow Past an Accelerated Porous Plate in a Rotating Frame[J]. Chin. Phys. Lett., 2011, 28(5): 074702
[7] T. Hayat, **, F. M. Abbasi, Awatif A. Hendi . Heat Transfer Analysis for Peristaltic Mechanism in Variable Viscosity Fluid[J]. Chin. Phys. Lett., 2011, 28(4): 074702
[8] LI Jian-Hua, YU Bo-Ming** . Tortuosity of Flow Paths through a Sierpinski Carpet[J]. Chin. Phys. Lett., 2011, 28(3): 074702
[9] Tasawar Hayat, **, Najma Saleem, Awatif A. Hendi . A Mathematical Model for Studying the Slip Effect on Peristaltic Motion with Heat and Mass Transfer[J]. Chin. Phys. Lett., 2011, 28(3): 074702
[10] Krishnendu Bhattacharyya**, Swati Mukhopadhyay, G. C. Layek . MHD Boundary Layer Slip Flow and Heat Transfer over a Flat Plate[J]. Chin. Phys. Lett., 2011, 28(2): 074702
[11] SUN Xiao-Hui, CHEN Zhi-Hua**, ZHANG Huan-Hao . MHD Control of Oblique Detonation Waves[J]. Chin. Phys. Lett., 2011, 28(1): 074702
[12] N. Ali**, M. Sajid, T. Javed, Z. Abbas . An Analysis of Peristaltic Flow of a Micropolar Fluid in a Curved Channel[J]. Chin. Phys. Lett., 2011, 28(1): 074702
[13] CAI Jian-Chao, YU Bo-Ming, MEI Mao-Fei, LUO Liang. Capillary Rise in a Single Tortuous Capillary[J]. Chin. Phys. Lett., 2010, 27(5): 074702
[14] S. Nadeem, Naeem Faraz. Thin Film Flow of a Second Grade Fluid over a Stretching/Shrinking Sheet with Variable Temperature-Dependent Viscosity[J]. Chin. Phys. Lett., 2010, 27(3): 074702
[15] YANG Fan, ZHU Ke-Qin. Generalized Lorenz Equation Derived from Thermal Convection of Viscoelastic Fluids in a Loop[J]. Chin. Phys. Lett., 2010, 27(3): 074702
Viewed
Full text


Abstract