FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Simultaneous Effects of MHD and Thermal Radiation on the Mixed Convection Stagnation-Point Flow of a Power-Law Fluid |
T. Hayat1,2, M. Mustafa3**, S. Obaidat2
|
1Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000, Pakistan
2Department of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
3Research Centre for Modeling and Simulation, National University of Sciences and Technology, Sector H-12, Islamabad, Pakistan
|
|
Cite this article: |
T. Hayat, M. Mustafa, S. Obaidat 2011 Chin. Phys. Lett. 28 074702 |
|
|
Abstract Magnetohydrodynamic (MHD) mixed convection stagnation-point flow and heat transfer of power-law fluids towards a stretching surface is investigated. The homotopy analysis method (HAM) is used in finding the series solution for a nonlinear problem. Closed form solutions for velocity and temperature fields are presented in the limiting cases. Graphical results are shown. It is found that velocity and temperature are decreasing functions of power law index. Numerical computations for shear stress coefficient and local Nusselt number are reported. The present results are also compared with the existing numerical solution in a limiting sense.
|
Keywords:
47.15.-x
47.50.-d
47.65.-d
|
|
Received: 25 September 2010
Published: 29 June 2011
|
|
PACS: |
47.15.-x
|
(Laminar flows)
|
|
47.50.-d
|
(Non-Newtonian fluid flows)
|
|
47.65.-d
|
(Magnetohydrodynamics and electrohydrodynamics)
|
|
|
|
|
[1] Chen C H 2003 Heat Mass Transfer 39 791
[2] Yurusoy M 2006 Int. J. Eng. Sci. 44 325
[3] Wang C and Pop I 2006 J. Non-Newtonian Fluid Mech. 138 161
[4] Prasad K V and Vajravelu K 2009 Int. J. Heat Mass Transfer 52 4956
[5] Abel M S, Datti P S and Mahesha N 2009 Int. J. Heat Mass Transfer 52 2902
[6] Crane L J 1970 Z. Angew. Math. Phys. 21 645
[7] Ishak A, Nazar R and Pop I 2008 Heat Mass Transfer. 44 921
[8] Cortell R 2008 Phys. Lett A 372 631
[9] Liao S J 2005 Int. J. Heat Mass Transfer 48 2529
[10] Ishak A, et al 2008 J. Eng. Math. 62 23
[11] Devi C D S, Takhar H S and Nath G 2003 Int. J. Heat Mass Transfer. 26 71
[12] Nazar R, Amin N, Pop I 2004 Mech. Res. Commun. 31 121
[13] Liao S J 2006 Commun. Nonlinear Sci. Numer. Simul. 11 326
[14] Mukhopadhyay S 2009 Int. J. Heat Mass Transfer 52 3261
[15] Chiam T C J 1994 J. Phys. Soc. Jpn. 63 2443
[16] Mahapatra T R and Gupta A S 2002 Heat Mass Transfer 38 517
[17] Chen C H 1998 Heat Mass Transfer 33 471
[18] Chen C H 2000 Heat Mass Transfer 36 79
[19] Ali M 2004 Heat Mass Transfer 40 285
[20] Mahapatra T R, et al 2009 Int. J. Non-Linear. Mech. 44 124
[21] Xu H and Liao S J 2008 Commun. Non-linear Sci. Numer. Simul. 13 350
[22] Liao S J 2009 Commun. Non-linear Sci. Numer. Simul. 14 983
[23] Tan Y and Abbasbandy S 2008 Commun. Non-linear Sci. Numer. Simul. 13 539
[24] Abbasbandy S 2008 Phys. Lett. A 372 613
[25] Abbasbandy S and Zakaria F S 2008 Non-Linear Dyn. 51 83
[26] Kechil S A and Hashim I 2009 Commun. Non-linear Sci. Numer. Simul. 14 1346
[27] Hashim I, Abdulaziz O and Momani S 2009 Commun. Non-linear Sci. Numer. Simul. 14 674
[28] Hayat T, Mustafa M and Mesloub S 2010 Z. Naturforsch. A 65 401
[29] Hayat T, Mustafa M and Asghar S 2010 Nonlin. Anal.: RWA 11 3186
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|