Chin. Phys. Lett.  2011, Vol. 28 Issue (7): 073301    DOI: 10.1088/0256-307X/28/7/073301
ATOMIC AND MOLECULAR PHYSICS |
Analytical Research on Rotation-Vibration Multiphoton Absorption of Diatomic Molecules in Infrared Laser Fields
FENG Hai-Ran1**, CHENG Jie1, YUE Xian-Fang1, ZHENG Yu-Jun2, DING Shi-Liang2
1Department of Physics and Information Engineering, Jining University, Qufu 273155
2School of Physics, Shandong University, Jinan 250100
Cite this article:   
FENG Hai-Ran, CHENG Jie, YUE Xian-Fang et al  2011 Chin. Phys. Lett. 28 073301
Download: PDF(908KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The multiphoton rotation-vibration energy absorption of diatomic molecules in infrared laser fields is analytically studied using the algebraic approach. The analytical expression of the rotation-vibration transition probability is given. The long-time average absorbed energy spectra and the average number of photons absorbed by the molecule are discussed. The results show that both molecular orientation and molecular anharmonicity are important factors in the rotation-vibration multiphoton absorption.
Keywords: 33.80.Wz      02.20.Sv     
Received: 01 January 1900      Published: 29 June 2011
PACS:  33.80.Wz (Other multiphoton processes)  
  02.20.Sv (Lie algebras of Lie groups)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/7/073301       OR      https://cpl.iphy.ac.cn/Y2011/V28/I7/073301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
FENG Hai-Ran
CHENG Jie
YUE Xian-Fang
ZHENG Yu-Jun
DING Shi-Liang
[1] Ramakrishna S and Seideman T 2007 Phys. Rev. Lett. 99 113901
[2] Kumarappan V, Holmegaard L, Martiny C et al 2008 Phys. Rev. Lett. 100 093006
[3] Chu Xi 2008 Phys. Rev. A 78 043408
[4] Iachello F 1981 Chem. Phys. Lett. 78 581
[5] Benjamin I, Levine R D and Kinsey J L 1983 J. Phys. Chem. 87 727
[6] Van Roosmalen O S, Benjamin I and Levine R D 1984 J. Chem. Phys. 81 5986
[7] Ding S L and Zheng Y J 1999 J. Chem. Phys. 111 4466
[8] Zheng Y J and Ding S L 2001 Phys. Rev. A 64 032720
[9] Karumuri S R 2010 Chin. Phys. Lett. 27 103301
[10] Feng H R and Ding S L 2007 J. Phys. B 40 69
[11] Feng H R, Liu Y, Zheng Y J, Ding S L and Ren W Y 2007 Phys. Rev. A 75 063417
[12] Levine R D, 1983 Chem. Phys. Lett. 95 87
[13] Cooper I L and Gupta R K 1997 Phys. Rev. A 55 4112
[14] Cooper I L 1998 J. Phys. Chem. A 102 9565
[15] Broeckhove J, Feyen B and Van Leuven P 1994 Int. J. Quantum Chem. 28 173
[16] Lin J T and Jiang T F 2000 J. Phys. B: At. Mol. Opt. Phys. 33 3023
[17] Geng Z H, Dai Y and Ding S L 2002 Chem. Phys. 278 119
[18] Hay P J and Dunning T H 1976 J. Chem. Phys. 64 5077
[19] Walker R B and Preston R K 1977 J. Chem. Phys. 67 2017
[20] Tung M and Yuan J M, 1987 Phys. Rev. A 36 4463
[21] Chelkowski S, Bandrauk A D and Corkum P B 1995 Phys. Rev. Lett. 65 2355
[22] Dimitriou K I, Constantoudis V, Mercouris Th, Komninos Y and Nicolaides C A 2007 Phys. Rev. A 76 033406
[23] Bonatsos D, Daskaloyannis C and Kokkotas K 1992 Phys. Rev. A 45 R6153
[24] Alhassid Y and Levine R D 1978 Phys. Rev. A 18 89
[25] Rau A R P and Zhao W 2005 Phys. Rev. A 71 063822
[26] Moloney J V and Meath W J 1978 Phys. Rev. A 17 1550
[27] Leasure S C and Wyatt R E 1981 Chem. Phys. Lett. 61 6197
[28] Lin S H and Fujimura Y 1984 Multiphoton Spectroscopy of Molecules (London: Academic) p 6
[29] Amstrup B and Henriksen N E 1992 J. Chem. Phys. 97 8285
[30] Korolkov M V and Paramonov G K 1997 Phys. Rev. A 56 3860
[31] Stranges S, Rithcer R and Alagia M 2002 J. Chem. Phys. 116 3676
[32] Elghobashi N, Krause P, Manz J and Oppel M 2003 Phys. Chem. Chem. Phys. 5 4806
[33] Dai Y and Ding S L 1999 Int. J. Quantum Chem. 71 201
[34] Herzberg G 1950 Molecular Spectra and Molecular Structure I: Spectra of Diatomic Molecules (Princeton: D. Van Mostrand Company, Inc.) pp 106 560
[35] Chang J and Wyatt R E 1986 J. Chem. Phys. 85 1840
Related articles from Frontiers Journals
[1] HUANG Chao-Guang,**,TIAN Yu,WU Xiao-Ning,XU Zhan,ZHOU Bin. New Geometry with All Killing Vectors Spanning the Poincaré Algebra[J]. Chin. Phys. Lett., 2012, 29(4): 073301
[2] ZHENG Shi-Wang, WANG Jian-Bo, CHEN Xiang-Wei, XIE Jia-Fang. Mei Symmetry and New Conserved Quantities of Tzénoff Equations for the Variable Mass Higher-Order Nonholonomic System[J]. Chin. Phys. Lett., 2012, 29(2): 073301
[3] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 073301
[4] XIA Li-Li . A Field Integration Method for a Nonholonomic Mechanical System of Non-Chetaev's Type[J]. Chin. Phys. Lett., 2011, 28(4): 073301
[5] WANG Peng . Perturbation to Noether Symmetry and Noether adiabatic Invariants of Discrete Mechanico-Electrical Systems[J]. Chin. Phys. Lett., 2011, 28(4): 073301
[6] LI Ji-Na, ZHANG Shun-Li, ** . Approximate Symmetry Reduction for Initial-value Problems of the Extended KdV-Burgers Equations with Perturbation[J]. Chin. Phys. Lett., 2011, 28(3): 073301
[7] WANG Hong**, TIAN Ying-Hui, CHEN Han-Lin . Non-Lie Symmetry Group and New Exact Solutions for the Two-Dimensional KdV-Burgers Equation[J]. Chin. Phys. Lett., 2011, 28(2): 073301
[8] HUANG Wei-Li, CAI Jian-Le** . Conformal Invariance of Higher-Order Lagrange Systems by Lie Point Transformation[J]. Chin. Phys. Lett., 2011, 28(11): 073301
[9] K. Fakhar**, A. H. Kara. An Analysis of the Invariance and Conservation Laws of Some Classes of Nonlinear Ostrovsky Equations and Related Systems[J]. Chin. Phys. Lett., 2011, 28(1): 073301
[10] ZHU Jing-Yi, LIU Ben-Kang, WANG Yan-Qiu, HE Hai-Xiang, WANG Li. Dynamics of H2 in Intense Femtosecond Laser Field[J]. Chin. Phys. Lett., 2010, 27(9): 073301
[11] MEI Feng-Xiang, CUI Jin-Chao, CHANG Peng. A Field Integration Method for a Weakly Nonholonomic System[J]. Chin. Phys. Lett., 2010, 27(8): 073301
[12] TAO Si-Xing, XIA Tie-Cheng. Lie Algebra and Lie Super Algebra for Integrable Couplings of C-KdV Hierarchy[J]. Chin. Phys. Lett., 2010, 27(4): 073301
[13] ZHENG Shi-Wang, XIE Jia-Fang, WANG Jian-Bo, CHEN Xiang-Wei. Another Conserved Quantity by Mei Symmetry of Tzénoff Equation for Non-Holonomic Systems[J]. Chin. Phys. Lett., 2010, 27(3): 073301
[14] LIU Ping, LOU Sen-Yue,. Lie Point Symmetries and Exact Solutions of the Coupled Volterra System[J]. Chin. Phys. Lett., 2010, 27(2): 073301
[15] XIE Yin-Li, JIA Li-Qun. Special Lie–Mei Symmetry and Conserved Quantities of Appell Equations Expressed by Appell Fun[J]. Chin. Phys. Lett., 2010, 27(12): 073301
Viewed
Full text


Abstract