THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
|
|
|
|
Hamiltonian of Green–Schwarz IIB Superstring Theory in AdS3×S3 Background |
KE San-Min1,2**, WANG Chun 3, WANG Zhan-Yun4,5, JIANG Ke-Xia6, SHI Kang-Jie4
|
1 College of Science, Chang'an University, Xi'an 710064
2 Key Laboratory for Special Area Highway Engineering of Ministry of Education, Chang'an University, Xi'an 710064
3 College of Science, Xi'an Shiyou University, Xi'an 710065
4 Institute of Modern Physics, Northwest University, Xi'an 710069
5 School of Electronic Engineering, Xi'an Institute of Posts and Telecommunications, Xi'an 710121
6 Department of Physics, Engineering College of CAPF, Xi'an 710086
|
|
Cite this article: |
KE San-Min, WANG Chun, WANG Zhan-Yun et al 2011 Chin. Phys. Lett. 28 071101 |
|
|
Abstract We parameterize the Green–Schwarz IIB superstring in the AdS3×S3 background under the light cone gauge by the method of Metsaev and Tseytlin in AdS3 and by the method of Rahmfeld and Rajaraman in S3. After some calculation, we obtain the corresponding Maurer–Cartan 1−forms and the action. Then we fix two bosonic variables x+=τ and y5=σ, perform the partial Legendre transformation of the remaining bosonic variables, and find a Lagrangian that is linear in velocity after eliminating the metric of the world sheet. We also give the Hamiltonian and prove that the system is local and the Poisson bracket of the theory can be well defined. Using these results, one can further study the properties of solution space, solution transformation and the structure of the flat current algebra of the superstring in the AdS3×S3 background.
|
Keywords:
11.25.Hf
11.25.Sq
|
|
Received: 20 October 2010
Published: 29 June 2011
|
|
PACS: |
11.25.Hf
|
(Conformal field theory, algebraic structures)
|
|
11.25.Sq
|
(Nonperturbative techniques; string field theory)
|
|
|
|
|
[1] Maldacena J M 1998 Adv. Theor. Math. Phys. 2 231
[2] Gubser S S, Klebanov I R and Polyakov A M 1998 Phys. Lett. B 428 105
[3] Witten E 1998 Adv. Theor. Math. Phys. 2 253
[4] Metsaev R R et al 1998 Nucl. Phys. B 533 109
[5] Roiban R et al 2000 J. High Energy Phys. 0011 024
[6] Kallosh R and Rahmfeld J 1998 Phys. Lett. B 443 143
Kallosh R and Tseytlin A A 1998 J. High Energy Phys. 9810 016
Kallosh R, Rahmfeld J and Rajaraman A 1998 J. High Energy Phys. 9809 002
Lü H et al 1999 J. Math. Phys. 40 4518
[7] Metsaev R R and Tseytlin A A 2001 Phys. Rev. D 63 046002
[8] Metsaev R R, Thorn C B and Tseytlin A A 2001 Nucl. Phys. B 596 151
[9] Bena I, Polchinski J and Roiban R 2004 Phys. Rev. D 69 046002
[10] Vallilo B C 2004 J. High Energy Phys. 0403 037
[11] Mikhailov A et al 2008 Nucl. Phys. B 802 1
[12] Magro M 2009 J. High Energy Phys. 0901 021
[13] Zhang L X, Wu S, Xie X N, Xiong C H, Yue R H and Shi K J 2007 Chin. Phys. Lett. 24 3092
[14] Vicedo B arXiv:hep-th/0910.0221
[15] Alday L F, Arutyunov G and Tseytlin A A 2005 J. High Energy Phys. 0507 002
[16] Arutyunov G, Frolov S, Plefka J and Zamaklar M 2007 J. Phys. A 40 3583
Arutyunov G and Frolov S 2009 J. Phys. A 42 254003
Frolov S, Plefka J and Zamaklar M 2006 J. Phys. A 39 13037
[17] Arutyunov G et al 2005 J. High Energy Phys. 0502 059
Alday L F, Arutyunov G and Frolov S 2006 J. High Energy Phys. 0601 078
[18] Klusoň J 2006 J. High Energy Phys. 0610 046
[19] Wang Z Y, Xie X N, Feng J, Wang Y X, Zeng Y and Shi K J Preprint arXiv:hep-th/0903.1400
[20] David J R, Mandal G and Wadia S R 2002 Phys. Rep. 369 549
[21] Maldacena J M and Strominger A 1998 J. High Energy Phys. 9812 005
[22] Rahmfeld J and Rajaraman A 1999 Phys. Rev. D 60 064014
[23] Park J and Rey S J 1999 J. High Energy Phys. 9901 001
[24] Chen B, He Y L, Zhang P et al 2005 Phys. Rev. D 71 086007
[25] Wang Z Y, Ke S M, Hao K and Shi K J 2011 Chin. Phys. Lett. 28 031101
[26] Berkovits N 2000 Nucl. Phys. B 565 333
[27] Berkovits N, Vafa C and Witten E 1999 J. High Energy Phys. 9903 018
[28] Metsaev R R and Tseytlin A A 2001 J. Math. Phys. 42 2987
[29] Ke S M, Wang C and Shi K J 2008 Commun. Theor. Phys. 50 129
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|