Chin. Phys. Lett.  2011, Vol. 28 Issue (7): 070403    DOI: 10.1088/0256-307X/28/7/070403
GENERAL |
Generalized Second Law of Thermodynamics in Wormhole Geometry with Logarithmic Correction
Faiz-ur-Rahman, Salahuddin, M. Akbar**
Centre for Advanced Mathematics and Physics, National University of Sciences and Technology (NUST), Islamabad, Pakistan
Cite this article:   
Faiz-ur-Rahman, Salahuddin, M. Akbar 2011 Chin. Phys. Lett. 28 070403
Download: PDF(444KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We construct various cases for validity of the generalized second law (GSL) of thermodynamics by assuming the logarithmic correction to the horizon entropy of an evolving wormhole. It is shown that the GSL is always respected for α0 ≤0, whereas for α0>0 the GSL is respected only if πr2A+/ℏ<α.
Keywords: 04.70.Dy      97.60.Lf     
Received: 08 October 2010      Published: 29 June 2011
PACS:  04.70.Dy (Quantum aspects of black holes, evaporation, thermodynamics)  
  97.60.Lf (Black holes)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/7/070403       OR      https://cpl.iphy.ac.cn/Y2011/V28/I7/070403
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Faiz-ur-Rahman
Salahuddin
M. Akbar
[1] Morris M S and Thorne K S 1988 Am. J. Phys. 56 395
[2] Bochicchio I and Faraoni V 2010 Phys. Rev. D 82 044040
Dzhunushaliev V, Folomeev V, Myrzakulov R and Singleton D 2010 Phys. Rev. D 82 045032
Carr B, Tomohiro Harada J and Hideki Maeda 2010 Class. Quant. Grav. 27 183101
[3] Bardeen J M et al 1973 Commun. Math. Phys. 31 161
Akbar M 2007 Chin. Phys. Lett. 24 1158
Akbar M and Cai R G 2007 Phys. Lett. B 648 243
Akbar M and Cai R G 2007 Phys. Rev. D 75 084003
Akbar M and Cai R G 2006 Phys. Lett. B 635 7
Cai R G and Ohta N 2010 Phys. Rev. D 81 084061
Cai R G and Li-Ming Cao 2009 Phys. Lett. B 679 504
Padmanabhan T 2010 Rept. Prog. Phys. 73 046901
Dawood Kothawala, D and Padmanabhan T 2009 Phys. Rev. D 79 104020
[4] Hawking S W 1975 Commun. Math. Phys. 43 199
[5] Bekenstein J D and Nuovo 1972 Lett. Nuovo Cimento 4 737
Bekenstein J D and Nuovo 1973 Phys. Rev. D 7 2333
[6] Frolov A V and Kofman L 2003 J. Cosmol. Astropart. Phys. 0305 009
Danielsson U K 2005 Phys. Rev. D 71 023516
Bousso R 2005 Phys. Rev. D 71 064024
[7] Bokhari A H and Akbar M 2010 Int. J. Mod. Phys. D 142 1656
Akbar M 2009 Int. J. Theor. Phys. 48 2665
Akbar M 2008 Chin. Phys. Lett. 25 4199
Mohseni Sadjadi H and Jamil M arXiv:gr-qc/1002.3588
Radicella N and Pavon D 2010 Phys. Lett. B 691 121
Karami K and Ghaffari S 2010 Phys. Lett. B 688 125
Barrow J D 1988 Nucl. Phys. B 310 743
Giovannini M 1999 Phys. Rev. D 59 121301
Zimdahl W and Pavon D 2000 Phys. Rev. D 61 108301
M R Setare 2006 Phys. Lett. B 641 130
Wu C et al 2008 Chem. Inform. 39 49016
[8] Bokhari A H and Akbar M 2010 Int. J. Mod. Phys. D 142 1656
Jamil M and Akbar M arXiv:gr-qc/1005.3444
Akbar M 2009 Int. J. Theor. Phys. 48 2665
Akbar M 2008 Chin. Phys. Lett. 25 4199
[9] Bokhari A H and Akbar M 2010 Int. J. Mod. Phys. D 142 1656
[10] Roman T A 1993 Phys. Rev. D 47 1370
[11] Zhu T et al arXiv:0906.4194v2[hep-th]
[12] Ren Z et al 2007 Mod. Phys. Lett. A 22 1737
Arzano M 2006 Phys. Lett. B 634 536
Myung Y S 2003 Phys. Lett. B 574 289
Castro C and Granik A 2003 Found. Phys. 33 445
Carlip S 2000 Class. Quant. Grav. 17 4175
Das S et al 2002 Class. Quant. Grav. 19 2355
Mukherji S and Pal S S 2002 J. High Energy Phys. 0205 026
Chatterjee A and Majumdar P 2004 Phys. Rev. Lett. 92 141301
Maty-Jasek J 2006 Phys. Rev. D 74 104030
Dabholkar A 1995 Phys. Lett. B 347 222
[13] Ghosh A and Mitra P 2005 Phys. Rev. D 71 027502
Meissner K A 2004 Class. Quant. Grav. 21 5245
[14] Hod S 2004 Class. Quant. Grav. 21 L97
[15] Medved A J M 2005 Class. Quant. Grav. 22 133
[16] Jamil M, Saridakis E N and Setare M R 2010 Phys. Rev. D 81 023007
Setare M R 2006 Phys. Lett. B 641 130
Related articles from Frontiers Journals
[1] CHEN Bin,NING Bo**,ZHANG Jia-Ju. Boundary Conditions for NHEK through Effective Action Approach[J]. Chin. Phys. Lett., 2012, 29(4): 070403
[2] ZHANG Bao-Cheng, CAI Qing-Yu, ZHAN Ming-Sheng. Entropy Conservation in the Transition of Schwarzschild-de Sitter Space to de Sitter Space through Tunneling[J]. Chin. Phys. Lett., 2012, 29(2): 070403
[3] M. Sharif**, G. Abbas. Phantom Energy Accretion by a Stringy Charged Black Hole[J]. Chin. Phys. Lett., 2012, 29(1): 070403
[4] LIU Yan, JING Ji-Liang**. Propagation and Evolution of a Scalar Field in Einstein–Power–Maxwell Spacetime[J]. Chin. Phys. Lett., 2012, 29(1): 070403
[5] M Sharif**, G Abbas . Phantom Accretion onto the Schwarzschild de-Sitter Black Hole[J]. Chin. Phys. Lett., 2011, 28(9): 070403
[6] Azad A. Siddiqui**, Syed Muhammad Jawwad Riaz, M. Akbar . Foliation and the First Law of Black Hole Thermodynamics[J]. Chin. Phys. Lett., 2011, 28(5): 070403
[7] HE Liang, HUANG Chang-Yin, WANG Ding-Xiong** . A Constraint of Black Hole Mass and the Inner Edge Radius of Relativistic Accretion Disc[J]. Chin. Phys. Lett., 2011, 28(3): 070403
[8] CAO Guang-Tao**, WANG Yong-Jiu . Interference Phase of Mass Neutrino in Schwarzschild de Sitter Field[J]. Chin. Phys. Lett., 2011, 28(2): 070403
[9] LIU Tong**, XUE Li . Gravitational Instability in Neutrino Dominated Accretion Disks[J]. Chin. Phys. Lett., 2011, 28(12): 070403
[10] WEI Yi-Huan**, CHU Zhong-Hui . Thermodynamic Properties of a Reissner–Nordström Quintessence Black Hole[J]. Chin. Phys. Lett., 2011, 28(10): 070403
[11] GUO Guang-Hai**, DING Xia . Area Spectra of Schwarzschild-Anti de Sitter Black Holes from Highly Real Quasinormal Modes[J]. Chin. Phys. Lett., 2011, 28(10): 070403
[12] PAN Qi-Yuan, JING Ji-Liang. Late-Time Evolution of the Phantom Scalar Perturbation in the Background of a Spherically Symmetric Static Black Hole[J]. Chin. Phys. Lett., 2010, 27(6): 070403
[13] WEI Yi-Huan. Mechanical and Thermal Properties of the AH of FRW Universe[J]. Chin. Phys. Lett., 2010, 27(5): 070403
[14] LIU Chang-Qing. Absorption Cross Section and Decay Rate of Stationary Axisymmetric Einstein-Maxwell Dilaton Axion Black Hole[J]. Chin. Phys. Lett., 2010, 27(4): 070403
[15] ZHAO Fan, HE Feng. Statistical Mechanical Entropy of a (4+n)-Dimensional Static Spherically Symmetric Black Hole[J]. Chin. Phys. Lett., 2010, 27(2): 070403
Viewed
Full text


Abstract