Chin. Phys. Lett.  2011, Vol. 28 Issue (7): 070402    DOI: 10.1088/0256-307X/28/7/070402
GENERAL |
Chaos in Kundt Type-III Spacetimes
Department of Physics, Eastern Mediterranean University, G. Magosa, N. Cyprus, Mersin 10, Turkey
Department of Physics, Eastern Mediterranean University, G. Magosa, N. Cyprus, Mersin 10, Turkey
Cite this article:   
Department of Physics, Eastern Mediterranean University, G. Magosa et al  2011 Chin. Phys. Lett. 28 070402
Download: PDF(505KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We consider geodesic motion in a particular Kundt type-III spacetime in which the Einstein–Yang–Mills equations admit the solutions. On a particular surface as constraint, we project the geodesics into the (x,y) plane and treat the problem as a two-dimensional one. Our numerical study shows that chaotic behavior emerges under reasonable conditions.
Keywords: 04.40.Nr      05.45.Pq      04.20.Jb     
Received: 06 September 2010      Published: 29 June 2011
PACS:  04.40.Nr (Einstein-Maxwell spacetimes, spacetimes with fluids, radiation or classical fields)  
  05.45.Pq (Numerical simulations of chaotic systems)  
  04.20.Jb (Exact solutions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/7/070402       OR      https://cpl.iphy.ac.cn/Y2011/V28/I7/070402
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Department of Physics
Eastern Mediterranean University
G. Magosa
N. Cyprus
Mersin 0
Turkey
[1] Stephani H, Kramer D, MacCallum M A H, Hoenselaers C and Herlt E 2003 Exact Solutions of Einstein's Field Equations (Cambridge: Cambridge University)
[2] Guven R and Yörük E 1996 Phys. Rev. D 54 6413
[3] Coley A A 2002 Phys. Rev. Lett. 89 281601
[4] Coley A, Milson R, Pelavas N, Pravda V, Pravdova A and Zalaletdinov R 2003 Phys. Rev. D 67 104020
[5] Coley A, Hervik S and Pelavas N 2006 Class. Quantum Grav. 23 3053
[6] Coley A, Fuster A, Hervik S and Pelavas N 2007 J. High Energy Phys. 0705 032
[7] Chakhad M 2009 arXiv:hepth/0907.1973
[8] Podolsky J and Zofka M 2009 Class. Quantum Grav. 26 105008
[9] Guven R 1979 Phys. Rev. D 19 471
[10] Podolsky J and Ortaggio M 2003 Class. Quantum Grav. 20 1685
[11] Podolsky J and Belan M 2004 Class. Class. Quantum Grav. 21 2811
[12] Podolsky J and Kofron D 2007 Class. Quantum Grav. 24 3413
[13] Griffiths J B, Docherty P and Podolsky J 2004 Class. Quantum Grav. 21 207
[14] Fuster A and van Holten J W 2005 Phys. Rev. D 72 024011
[15] Podolsky J and Vesely K 1998 Phys. Rev. D 58 081501
[16] Sakalli I and Halilsoy M 2006 Phys. Rev. D 74 067501
[17] Misner C W, Thorne K S and Wheeler K A 1973 Gravitation (San Francisco: W H Freeman)
[18] Cheb-Terrab E S and de Oliveria H P 1996 Comput. Phys. Commun. 95 171
Related articles from Frontiers Journals
[1] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 070402
[2] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 070402
[3] José Antonio Belinchón*. Scale-Covariant Theory of Gravitation Through Self-Similarity[J]. Chin. Phys. Lett., 2012, 29(5): 070402
[4] Gamal G. L. Nashed*. Spherically Symmetric Solutions on a Non-Trivial Frame in f(T) Theories of Gravity[J]. Chin. Phys. Lett., 2012, 29(5): 070402
[5] M. Sharif*,Z. Yousaf. Shearfree Spherically Symmetric Fluid Models[J]. Chin. Phys. Lett., 2012, 29(5): 070402
[6] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 070402
[7] LI Xian-Feng**, Andrew Y. -T. Leung, CHU Yan-Dong. Symmetry and Period-Adding Windows in a Modified Optical Injection Semiconductor Laser Model[J]. Chin. Phys. Lett., 2012, 29(1): 070402
[8] R. K. Tiwari**, D. Tiwari, Pratibha Shukla. LRS Bianchi Type-II Cosmological Model with a Decaying Lambda Term[J]. Chin. Phys. Lett., 2012, 29(1): 070402
[9] JI Ying**, BI Qin-Sheng . SubHopf/Fold-Cycle Bursting in the Hindmarsh–Rose Neuronal Model with Periodic Stimulation[J]. Chin. Phys. Lett., 2011, 28(9): 070402
[10] R. K. Tiwari*, S. Sharma** . Bianchi Type-I String Cosmological Model with Bulk Viscosity and Time-Dependent Λ term[J]. Chin. Phys. Lett., 2011, 28(9): 070402
[11] WANG Xing-Yuan**, QIN Xue, XIE Yi-Xin . Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map[J]. Chin. Phys. Lett., 2011, 28(8): 070402
[12] WANG Xing-Yuan**, REN Xiao-Li . Chaotic Synchronization of Two Electrical Coupled Neurons with Unknown Parameters Based on Adaptive Control[J]. Chin. Phys. Lett., 2011, 28(5): 070402
[13] SHI Si-Hong, YUAN Yong, WANG Hui-Qi, LUO Mao-Kang** . Weak Signal Frequency Detection Method Based on Generalized Duffing Oscillator[J]. Chin. Phys. Lett., 2011, 28(4): 070402
[14] LI Qun-Hong**, CHEN Yu-Ming, QIN Zhi-Ying . Existence of Stick-Slip Periodic Solutions in a Dry Friction Oscillator[J]. Chin. Phys. Lett., 2011, 28(3): 070402
[15] YANG Yang, WANG Cang-Long, DUAN Wen-Shan**, CHEN Jian-Min . Resonance and Rectification in a Two-Dimensional Frenkel–Kontorova Model with Triangular Symmetry[J]. Chin. Phys. Lett., 2011, 28(3): 070402
Viewed
Full text


Abstract