Chin. Phys. Lett.  2011, Vol. 28 Issue (7): 070303    DOI: 10.1088/0256-307X/28/7/070303
GENERAL |
Energy Spectra of the Harmonic Oscillator in a Generalized Noncommutative Phase Space of Arbitrary Dimension
LIN Bing-Sheng1**, HENG Tai-Hua2
1 School of Mathematical Sciences, Capital Normal University, Beijing 100048
2 School of Physics and Material Science, Anhui University, Hefei 230039
Cite this article:   
LIN Bing-Sheng, HENG Tai-Hua 2011 Chin. Phys. Lett. 28 070303
Download: PDF(424KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We use the invariant eigen-operator method to study the higher-dimensional harmonic oscillator in a type of generalized noncommutative phase space, and obtain the explicit expression of the energy spectra of the noncommutative harmonic oscillator in arbitrary dimension. It is found that the energy spectra of the higher-dimensional noncommutative harmonic oscillator are equal to the sum of the energy spectra of some 1D harmonic oscillators and some 2D noncommutative harmonic oscillators. We believe that the properties of the harmonic oscillator may reflect some essence of the noncommutative phase space.
Keywords: 03.65.Fd      02.40.Gh      03.65.Ta     
Received: 20 March 2011      Published: 29 June 2011
PACS:  03.65.Fd (Algebraic methods)  
  02.40.Gh (Noncommutative geometry)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/7/070303       OR      https://cpl.iphy.ac.cn/Y2011/V28/I7/070303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIN Bing-Sheng
HENG Tai-Hua
[1] Seiberg N and Witten E 1999 J. High Energy Phys. 09 032
[2] Douglas M R and Nekrasov N A 2001 Rev. Mod. Phys. 73 977
[3] Chaichian M, Presnajder P and Tureanu A 2005 Phys. Rev. Lett. 94 151602
[4] Ettefaghi M M and Haghighat M 2008 Phys. Rev. D 77 056009
[5] Snyder H S 1947 Phys. Rev. 71 38
[6] Connes A 1994 Noncommutative Geometry (New York: Academic)
[7] Doplicher S, Fredenhagen K and Roberts J E 1994 Phys. Lett. B 331 39
[8] Zupnik B M 2007 Class. Quantum Grav. 24 15
[9] Polychronakos A P 2001 J. High Energy Phys. 06 070
[10] Gomis J and Mehen T 2000 Nucl. Phys. B 591 265
[11] Nair V P and Polychronakos A P 2001 Phys. Lett. B 505 267
[12] Zhang J Z 2004 Phys. Lett. B 597 362
[13] Li K, Wang J H and Chen C Y 2005 Mod. Phys. Lett. A 20 2165
[14] Vakili B, Khosravi N and Sepangi H R 2007 Class. Quantum Grav. 24 931
[15] Bastos C, Bertolami O, Dias N C and Prata J N 2008 Phys. Rev. D 78 023516
[16] Heng T H, Lin B S and Jing S C 2010 Chin. Phys. Lett. 27 090302
[17] Hatzinikitas A and Smyrnakis I 2002 J. Math. Phys. 43 113
[18] Smailagic A and Spallucci E 2002 J. Phys. A: Math. Gen. 35 L363
[19] Kijanka A and Kosinski P 2004 Phys. Rev. D 70 127702
[20] Jellal A, Schreiber M and El Kinani E H 2005 Int. J. Mod. Phys. A 20 1515
[21] Lin B S, Jing S C and Heng T H 2008 Mod. Phys. Lett. A 23 445
[22] Ben Geloun J, Gangopadhyay S and Scholtz F G 2009 Europhys. Lett. 86 51001
[23] Dadic I, Jonke L and Meljanac S 2005 Acta Phys. Slovaca 55 149
[24] Wang J H, Li K and Liu P 2006 High Energy Phys. Nucl Phys. 30 387
[25] Fan H Y and Li C 2004 Phys. Lett. A 321 75
[26] Jing S C and Fan H Y 2005 Mod. Phys. Lett. A 20 691
[27] Jing S C and Lin B S 2008 Phys. Lett. A 372 7109
Related articles from Frontiers Journals
[1] LIAN Jin-Ling, ZHANG Yuan-Wei, LIANG Jiu-Qing. Macroscopic Quantum States and Quantum Phase Transition in the Dicke Model[J]. Chin. Phys. Lett., 2012, 29(6): 070303
[2] QIN Meng, ZHAI Xiao-Yue, CHEN Xuan, LI Yan-Biao, WANG Xiao, BAI Zhong. Effect of Spin-Orbit Interaction and Input State on Quantum Discord and Teleportation of Two-Qubit Heisenberg Systems[J]. Chin. Phys. Lett., 2012, 29(3): 070303
[3] CAO Gang, WANG Li, TU Tao, LI Hai-Ou, XIAO Ming, GUO Guo-Ping. Pulse Designed Coherent Dynamics of a Quantum Dot Charge Qubit[J]. Chin. Phys. Lett., 2012, 29(3): 070303
[4] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 070303
[5] YAN Jun-Yan**, WANG Lin-Cheng, YI Xue-Xi . Sudden Transition between Quantum Correlation and Classical Correlation: the Effect of Interaction between Subsystems[J]. Chin. Phys. Lett., 2011, 28(6): 070303
[6] TANG Jian-Shun, LI Yu-Long, LI Chuan-Feng**, XU Jin-Shi, CHEN Geng, ZOU Yang, ZHOU Zong-Quan, GUO Guang-Can . Experimental Violation of Multiple-Measurement Time-Domain Bell's Inequalities[J]. Chin. Phys. Lett., 2011, 28(6): 070303
[7] XU Guo-Fu**, TONG Dian-Min . Non-Markovian Effect on the Classical and Quantum Correlations[J]. Chin. Phys. Lett., 2011, 28(6): 070303
[8] ZHANG Min-Cang**, HUANG-FU Guo-Qing . Analytical Approximation to the -Wave Solutions of the Hulthén Potential in Tridiagonal Representation[J]. Chin. Phys. Lett., 2011, 28(5): 070303
[9] O. Bayrak**, A. Soylu, I. Boztosun . Effect of the Velocity-Dependent Potentials on the Bound State Energy Eigenvalues[J]. Chin. Phys. Lett., 2011, 28(4): 070303
[10] ZHA Xin-Wei**, MA Gang-Long . Classification of Four-Qubit States by Means of a Stochastic Local Operation and the Classical Communication Invariant[J]. Chin. Phys. Lett., 2011, 28(2): 070303
[11] LI Chuan-Feng**, WANG Hao-Tian, YUAN Hong-Yuan, GE Rong-Chun, GUO Guang-Can . Non-Markovian Dynamics of Quantum and Classical Correlations in the Presence of System-Bath Coherence[J]. Chin. Phys. Lett., 2011, 28(12): 070303
[12] SHEN Yao, HAO Liang, LONG Gui-Lu** . Why Can We Copy Classical Information?[J]. Chin. Phys. Lett., 2011, 28(1): 070303
[13] Salman Khan, M. Ramzan, M. K. Khan. Quantum Model of Bertrand Duopoly[J]. Chin. Phys. Lett., 2010, 27(8): 070303
[14] SUN Chun-Xiao, SHI Ming-Jun, DU Jiang-Feng. Correlations Existing in Three-Qubit Product States[J]. Chin. Phys. Lett., 2010, 27(4): 070303
[15] D. Agboola. Solutions to the Modified Pöschl-Teller Potential in D-Dimensions[J]. Chin. Phys. Lett., 2010, 27(4): 070303
Viewed
Full text


Abstract