Chin. Phys. Lett.  2011, Vol. 28 Issue (7): 070203    DOI: 10.1088/0256-307X/28/7/070203
GENERAL |
Numerical Simulation of Hyperbolic Gradient Flow with Pressure
LI Dong **, XIE Zheng, YI Dong-Yun
Department of Mathematics and Systems Science, National University of Defense Technology, Changsha 410073
Cite this article:   
LI Dong, XIE Zheng, YI Dong-Yun 2011 Chin. Phys. Lett. 28 070203
Download: PDF(1577KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose a numerical algorithm for hyperbolic gradient flow with pressure for the initial value problem and boundary value problem on a compact manifold to investigate the influence of pressure on the evolution of the manifold. In particular, we simulate the behavior of a cotangent vector field on compact submanifolds in R3, and show that shock waves are generated.
Keywords: 02.40.Vh      02.30.Jr      02.40.Ky     
Received: 24 April 2011      Published: 29 June 2011
PACS:  02.40.Vh (Global analysis and analysis on manifolds)  
  02.30.Jr (Partial differential equations)  
  02.40.Ky (Riemannian geometries)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/7/070203       OR      https://cpl.iphy.ac.cn/Y2011/V28/I7/070203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Dong
XIE Zheng
YI Dong-Yun
[1] Dai W R, Kong D X and Liu K F 2008 Asian J. Math. 12 345
[2] Kong D X 2007 The Proceedings of ICCM 2007 (Beijing: Higher Educational Press) vol II p 95
[3] Kong D X and Liu K F 2007 J. Math. Phys. 48 103508
[4] Kong D X, Liu K F and Xu D L 2009 Commun. Part. Diff. Eq. 34 553
[5] Dai W R, Kong D X and Liu K F 2010 Pure and Applied Mathematics Quarterly 6 331
[6] Xie Z and Ye Z 2010 Pure and Applied Mathematics Quarterly (accepted)
[7] Kong D X and Liu K F arXiv:1009.3993v1
[8] Xie Z, Li D, Zhao Z Y and Wang Z L 2011 Pure and Applied Mathematics Quarterly (accepted)
[9] Desbrun M, Hirani A N, Leok M and Marsden J E arXiv:math/0508341v2
[10] Knobel R 2000 An Introduction to the Mathematical Theory of Waves (Providence: American Mathematical Society)
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 070203
[2] WU Yong-Qi. Exact Solutions to a Toda-Like Lattice Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2012, 29(6): 070203
[3] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 070203
[4] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 070203
[5] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 070203
[6] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 070203
[7] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 070203
[8] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 070203
[9] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 070203
[10] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 070203
[11] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 070203
[12] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 070203
[13] WU Yong-Qi. Asymptotic Behavior of Periodic Wave Solution to the Hirota–Satsuma Equation[J]. Chin. Phys. Lett., 2011, 28(6): 070203
[14] ZHAO Li-Yun, GUO Bo-Ling, HUANG Hai-Yang** . Blow-up Solutions to a Viscoelastic Fluid System and a Coupled Navier–Stokes/Phase-Field System in R2[J]. Chin. Phys. Lett., 2011, 28(6): 070203
[15] WU Jian-Ping . Bilinear Bäcklund Transformation for a Variable-Coefficient Kadomtsev–Petviashvili Equation[J]. Chin. Phys. Lett., 2011, 28(6): 070203
Viewed
Full text


Abstract