CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Subband Light Emission from Phosphorous-Doped Amorphous Si/SiO2 Multilayers at Room Temperature |
SUN Hong-Cheng, XU Jun**, LIU Yu, MU Wei-Wei, XU Wei, LI Wei, CHEN Kun-Ji
|
Nanjing National Laboratory of Microstructures, Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093
|
|
Cite this article: |
SUN Hong-Cheng, XU Jun, LIU Yu et al 2011 Chin. Phys. Lett. 28 067802 |
|
|
Abstract Phosphorous-doped hydrogenated amorphous Si/SiO2 multilayer structures are fabricated in a plasma enhanced chemical vapor deposition system. The microstructural and luminescence properties of the samples are characterized after annealing at various temperatures. Under the onset crystallization temperature 800–900 °C, a strong subband infrared light emission in the range 1.1–1.8 μm is observed at room temperature instead of the usually observed visible light emission. This subband infrared emission is gradually enhanced with the increase of phosphorus doping concentration, which can be ascribed to the increase of the luminescent defect states promoted by the doped phosphorous atoms.
|
Keywords:
78.55.Qr
73.20.Hb
73.21.Ac
|
|
Received: 12 February 2011
Published: 29 May 2011
|
|
PACS: |
78.55.Qr
|
(Amorphous materials; glasses and other disordered solids)
|
|
73.20.Hb
|
(Impurity and defect levels; energy states of adsorbed species)
|
|
73.21.Ac
|
(Multilayers)
|
|
|
|
|
[1] Canham L T 1990 Appl. Phys. Lett. 57 1046
[2] Delerue C, Lannoo M, Allan G and Martin E 1995 Thin Solid Films 255 27
[3] Kovalev D, Heckler H, Polisski G and Koch F 1999 Phys. Status Solidi B 215 871
[4] Takeoka S, Fujii M and Hayashi S 2000 Phys. Rev. B 62 16820
[5] Blanco A, Chomski E, Grabtchak S and Ibisate M 2000 Nature 405 437
[6] Cen Z, Xu J, Liu Y S, Li W, Xu L, Ma Z Y, Huang X F and Chen K J 2006 Appl. Phys. Lett. 89 163107
[7] Lin G R, Lin C K, Chou L J and Chueh Y L 2006 Appl. Phys. Lett. 89 093126
[8] Gaburro Z, Pucker G, Bellutti P and Pavesi L 2000 Solid State Commun. 114 33
[9] Vinciguerra V, Franzo G, Priolo F, Iacona F and Spinella C 2000 J. Appl. Phys. 87 8165
[10] Kveder V V, Steinman E A, Shevchenko S A and Grimmeiss H G 1995 Phys. Rev. B 51 10520
[11] Kveder V, Badylevich M, Schroter W, Seibt M, Steinman E and Izotov A 2005 Phys. Status Solidi A 202 901
[12] Garrido B, García C, Seo S Y and Pellegrino P 2007 Phys. Rev. B 76 245308
[13] Fujii M, Toshikiyo K, Takase Y, Yamaguchi Y and Hiyashi S 2003 J. Appl. Phys. 94 1990
[14] Fujio K, Fujii M, Sumida K, Hiyashi S, Fujisawa M and Ohta H 2008 Appl. Phys. Lett. 93 021920
[15] Shklyaev A A, Nakamura Y, Dulsev F N and Ichikawa M 2009 J. Appl. Phys. 105 063513
[16] Shklyaev A A, Nobuki S, Uchida S, Nakamura Y and Ichikawa M 2006 Appl. Phys. Lett. 88 121919
[17] Wang T, Wei D Y, Sun H C and Xu J 2009 Physica E 41 923
[18] Chen D Y, Wei D Y, Xu J, Han P G, Wang X, Ma Z Y, Chen K J, Shi W H and Wang Q M 2008 Semicond. Sci. Technol. 23 015013
[19] Kamei T, Stradins P and Mastsuda A 1999 Appl. Phys. Lett. 74 1707
[20] Zi J, Büscher H, Falter C, Ludwig W, Zhang K and Xie X 1996 Appl. Phys. Lett. 69 200
[21] Song C, Xu J, Chen G R and Sun H C 2010 Appl. Surf. Sci. 257 1337
[22] Kanemitsu Y and Okamoto S 1997 Phys. Rev. B 56 15561
[23] Qin G G, Ran G Z, Sun K and Xu H J 2010 J. Nanosci. Nanotechnol. 10 1584
[24] Giri P K, Coffa S and Rimini E 2001 Appl. Phys. Lett. 78 291
[25] Han P G, Ma Z Y, Wang Z B and Zhang X 2008 Nanotechnology 19 325708
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|